C O M M U N I C A T I O N S
Scheme 3. Synthesis of Mycalaminea
were developed for the preparation of either mycalamide A (1) or
C(10)-epi-mycalamide A (26).
Acknowledgment. Generous financial support from the National
Cancer Institute of the NIH (R01 CA101438) is gratefully
acknowledged. We thank Pfizer Inc. (Japan) for postdoctoral
fellowship support to N.W.
1
Supporting Information Available: Experimental details and H
and 13C NMR spectra of key intermediates. This material is available
References
(1) (a) Perry, N. B.; Blunt, J. W.; Munro, M. H. G.; Pannell, L. K. J. Am.
Chem. Soc. 1988, 110, 4850. (b) Perry, N. B.; Blunt, J. W.; Munro, M.
H. G.; Thompson, A. M. J. Org. Chem. 1990, 55, 223. (c) Simpson, J. S.;
Garson, M. J.; Blunt, J. W.; Munro, M. H. G.; Hooper, J. N. A. J. Nat.
Prod. 2000, 63, 704. (d) West, L. M.; Northcote, P. T.; Hood, K. A.;
Miller, J. H.; Page, M. J. J. Nat. Prod. 2000, 63, 707.
(2) (a) Sakemi, S.; Ichiba, T.; Kohmoto, S.; Saucy, G.; Higa, T. J. Am. Chem.
Soc. 1988, 110, 4851. (b) Matsunaga, S.; Fusetani, N.; Nakao, Y.
Tetrahedron 1992, 48, 8369. (c) Kobayashi, J.; Itagaki, F.; Shigemori,
H.; Sasaki, T. J. Nat. Prod. 1993, 56, 976. (d) Vuong, D.; Capon, R. J.;
Lacey, E.; Gill, J. H.; Heiland, K.; Friedel, T. J. Nat. Prod. 2001, 64,
640.
(3) (a) Fusetani, N.; Sugawara, T.; Matsunaga, S. J. Org. Chem. 1992, 57,
3828. (b) Tsukamoto, S.; Matsunaga, S.; Fusetani, N.; Toh-e, A.
Tetrahedron 1999, 55, 13697. (c) Paul, G. K.; Gunasekera, S. P.; Longley,
R. E.; Pomponi, S. A. J. Nat. Prod. 2002, 65, 59.
(4) (a) Burres, N. S.; Clement, J. J. Cancer Res. 1989, 49, 2935. (b) Ogawara,
H.; Higashi, K.; Uchino, K.; Perry, N. B. Chem. Pharm. Bull. 1991, 39,
2152. (c) Thompson, A. M.; Blunt, J. W.; Munro, M. H. G.; Clark, B. M.
J. Chem. Soc., Perkin Trans. 1 1994, 1025. (d) Thompson, A. M.; Blunt,
J. W.; Munro, M. H. G.; Perry, N. B. J. Chem. Soc., Perkin Trans. 1
1995, 1233.
a Conditions: (a) (MeO)2CH2, P2O5, CH2Cl2 (quant). (b) LAH, Et2O
(86%). (c) n-BuLi, TBDPSCl, THF (quant). (d) (COCl)2, DMSO, Et3N
CH2Cl2 (90%). (e) Me2CCHCH2SnBu3, ZnBr2, CH2Cl2 (90%). (f) NaH,
MeI, THF, 98%. (g) ZnBr2 (2.5 equiv), n-BuSH (3.0 equiv), room temp (rt),
8 min, CH2Cl2, 98%. (h) BzCl, DIPEA, CH2Cl2, rt, 11 h, 80%. (i) CH2-
(OMe)2, P2O5, CH2Cl2, rt, 3 h, 91%. (j) K2CO3, MeOH, rt, 3 h, 83%. (k)
O3, Me2S, CH2Cl2; Ac2O, DMAP, pyr; BF3‚OEt2, CH2CHCH2TMS, CH2Cl2,
66%. (l) TBAF, THF, 91%. (m) (COCl)2, DMSO, NEt3, CH2Cl2. (n)
(CHO)n, concd HCl, THF; Ac2O, DMAP, pyr, 63%, dr 5.4:1. (o) OsO4,
(DHQ)2PYR, K2CO3, K3Fe(CN)6, t-BuOH/H2O, -3 °C (R-AcO 83%, dr
5.0:1; â-OAc 85%, dr 5.9:1). (p) Ac2O, DIPEA, DMAP, CH2Cl2, 92%. (q)
TMSN3, TMSOTf, CH3CN, -78 to 0 °C (quant). (r) H2, Pd/C, EtOAc, 90%.
Scheme 4. Synthesis of Mycalamide A
(5) Galvine, F.; Freeman, G. J.; Razi-Wolf, Z.; Benacerraf, B.; Nadler, L.;
Reiser, H. Eur. J. Immunol. 1993, 23, 283.
(6) Mycalamide A: (a) Hong, C. Y.; Kishi, Y. J. Org. Chem. 1990, 55, 4242.
(b) Nakata, T.; Fukui, H.; Nakagawa, T.; Matsukura, H. Heterocycles 1996,
42, 159. (c) Roush, W. R.; Pfeifer, L. A. Org. Lett. 2000, 2, 859. Formal
syntheses: (d) Nakata, T.; Matsukura, H.; Jian, D.; Nagashima, H.
Tetrahedron Lett. 1994, 35, 8229. (e) Trost, B. M.; Yang, H.; Probst, G.
D. J. Am. Chem. Soc. 2004, 126, 48.
(7) Mycalamide B and theopederin D: Kocienski, P.; Narquizian, R.; Raubo,
P.; Smith, C.; Farrugia, L. J.; Muir K.; Boyle, F. T. J. Chem. Soc., Perkin
Trans. 1 2000, 2357 and references therein. See also ref 6.
(8) Onnamide A: Hong, C. Y.; Kishi, Y. J. Am. Chem. Soc. 1991, 113, 9694.
(9) (a) Kocienski, P.; Raubo, P.; Davis, J. K.; Boyle, F. T.; Davies, D. E.;
Richter, A. J. Chem. Soc., Perkin Trans. 1 1996, 1797. (b) Roush, W. R.;
Pfeifer, L. A.; Marron, T. G. J. Org. Chem. 1998, 63, 2064. (c) Breitfelder,
S.; Schlapbach, A.; Hoffmann, R. W. Synthesis 1998, 468 and references
therein. (d) Toyota, M.; Hirota, M.; Hirano, H.; Ihara, M. Org. Lett. 2000,
2, 2031. (e) Rech, J. C.; Floreancig, P. E. Org. Lett. 2003, 5, 1495. (f)
Gardiner, J. M.; Mills, R.; Fessard, T. Tetrahedron Lett. 2004, 45, 1215.
(10) (a) Adams, M. A.; Duggan, A. J.; Smolanoff, J.; Meinwald, J. J. Am.
Chem. Soc. 1979, 101, 5364. (b) Yanagiya, M.; Matsuda, F.; Hasegawa,
K.; Matsumoto, T. Tetrahedron Lett. 1982, 23, 4039 and references therein.
(c) Roush, W. R.; Marron, T. G.; Pfeifer, L. A. J. Org. Chem. 1997, 62,
474 and references therein. (d) Kocienski, P. J.; Narquizian, R.; Raubo,
P.; Smith, C.; Boyle, F. T. Synlett 1998, 869 and references therein. (e)
Toyota, M.; Hirota, M.; Nishikawa, Y.; Fukumoto, K.; Ihara, M. J. Org.
Chem. 1998, 63, 5895. (f) Trotter, N. S.; Takahashi, S.; Nakata, T. Org.
Lett. 1999, 1, 957 and references therein. (g) Breitfelder, S.; Schuemacher,
A. C.; Ro¨lle, T.; Kikuchi, M.; Hoffmann, R. W. HelV. Chim. Acta 2004,
87, 1202 and references therein.
(11) (a) Fugami, K.; Oshima, K.; Utimoto, K. Tetrahedron Lett. 1987, 28, 809.
(b) Larock, R. C.; Lee, N. H. J. Am. Chem. Soc. 1991, 113, 7815.
(12) Inch, T. D.; Williams, N. J. Chem. Soc. 1970, 263.
(13) Brown, H. C.; Bhat, K. S. J. Am. Chem. Soc. 1986, 108, 5919.
(14) Petasis, N. A.; Bzowej, E. I. J. Am. Chem. Soc. 1990, 112, 6392.
(15) The spectroscopic data for 19 matched that reported by Nakata et al.10j
for the same compound and by Trost6e for the enantiomer.
(16) (a) Keck, G. E.; Abbott, D. E.; Boden, E. P.; Enholm, E. J. Tetrahedron
Lett. 1984, 25, 3927 and references therein. (b) Marshall, J. A.; Luke, G.
P. J. Org. Chem. 1991, 56, 483 and references therein.
(17) The deprotection was slower and messier using ZnBr2 alone. The use of
ZnBr2 for the deprotection of MEM and menthoxymethyl ethers has been
reported. See: Greene, T. H.; Wuts, P. G. M. ProtectiVe Groups in Organic
Synthesis, 3rd ed.; Wiley & Sons: New York, 1999; Chapter 2.
(18) Ayala, L.; Lucero, C. G.; Romero, J. A. C.; Tabacco, S. A.; Woerpel, K.
A. J. Am. Chem. Soc. 2003, 125, 15521.
dehyde and concentrated HCl in THF at -15 to -10 °C directly
yielded the 4-hydroxy-1,3-dioxane, which upon acetylation afforded
trioxadecalin 21 (57% yield from 9). After asymmetric dihydroxy-
lation19 of 21, the diacetate of diol 22 was treated with TMSN3
and TMSOTf to transform the anomeric acetate to an azide, which
on hydrogenation gave the desired mycalamine unit, 23.
For coupling the two partners, an extensive examination of
methods6a,b revealed that the reaction proceeded cleanly and in good
yield (61%) using PyAOP and i-Pr2NEt in (Scheme 4). However,
deprotection of the coupled product with 1 N LiOH in THF gave
only C(10)-epi-mycalamide A 264c (75%),20 which could not be
epimerized to mycalamide A.6a Gratifyingly, when the coupling of
17 and 23 was carried out using DCC and DMAP in dichlo-
romethane, the predominant product was the desired mycalamide
diastereomer, 24, obtained in a 5:1 ratio along with 25. Finally,
the three esters were removed through hydrolysis using 1 N LiOH
in THF to afford mycalamide A in 78% yield.20
In conclusion, we have completed a concise and efficient total
synthesis of mycalamide A by the convergent coupling of pederic
acid piece 17 with mycalamine unit 23. The left half, (+)-7-
benzoylpederic acid, was synthesized in seven steps and 34.6%
overall yield from homoallylic alcohol 7 through a route that
featured a one-step Pd(II)-catalyzed tandem Wacker/Heck cycliza-
tion reaction to prepare the tetrahydropyran ring system. The right
half unit, 23, was synthesized from diethyl D-tartrate (12) in 21
steps and 10.5% overall yield. Effective, stereoselective methods
(19) Crispino, G. A.; Jeong, K.-S.; Kolb, H. C.; Wang, Z.-M.; Xu, D.; Sharpless,
K. B. J. Org. Chem. 1993, 58, 3785.
(20) The NMR spectra of our synthetic mycalamide A and epi-mycalamide A
matched to those of the naturally derived materials. We thank Prof. J. W.
Blunt (University of Canterbury, New Zealand) for kindly providing the
spectra.
JA050728L
9
J. AM. CHEM. SOC. VOL. 127, NO. 20, 2005 7291