where IEM is the response (relative excimer emission intensity),
12 G. Dom, C. Shaw-Jackson, C. Matis, O. Bouffioux, J. J. Picard, A.
Prochiantz, M. P. Mingeot-Leclercq, R. Brasseur and R. Rezsohazy,
Nucleic Acids Res., 2003, 31, 556–561.
13 P. E. G. Thore´n, D. Persson, E. K. Esbjo¨rner, M. Gokso¨r, P. Lincoln
and B. Norde´n, Biochemistry, 2004, 43, 3471–3489.
14 A. Ziegler, X. L. Blatter, A. Seelig and J. Seelig, Biochemistry, 2003,
42, 9185–9194.
EM
EM
I0 the initial value, I∞ the value at saturation, c the pR
concentration, and n the Hill coefficient, to obtain EC50’s. The
calculated apparent KD’s (EC50’s) were then plotted as a function
of the concentration of NaCl (Fig. 10A) or, converted into DG
using eqn. (5)
15 H. Binder and G. Lindblom, Biophys. J., 2003, 85, 982–995.
16 K. Takeshima, A. Chikushi, K. Lee, S. Yonehara and K. Matsuzaki,
J. Biol. Chem., 2003, 278, 1310–1315.
17 S. D. Kra¨mer and H. Wunderli-Allenspach, Biochim. Biophys. Acta,
2003, 1609, 161–169.
18 S. M. Fuchs and R. T. Raines, Biochemistry, 2004, 43, 2438–2444.
19 P. E. G. Thore´n, D. Persson, P. Isakson, M. Gokso¨r, A. Onfelt and
B. Norde´n, Biochem. Biophys. Res. Commun., 2003, 307, 100–107.
20 D. Persson, P. E. G. Thore´n, M. Herner, P. Lincoln and B. Norde´n,
Biochemistry, 2003, 42, 421–429.
21 J. L. Zaro and W. C. Shen, Biochem. Biophys. Res. Commun., 2003,
307, 241–247.
22 D. Seebach, K. Namoto, R. Yogesh, Y. R. Mahajan, P. Bindscha¨dler,
R. Sustmann, M. Kirsch, N. S. Ryder, M. Weiss, M. Sauer, C. Roth,
S. Werner, H.-D. Beer, C. Munding, P. Walde and M. Voser, Chem.
Biodiv., 2004, 1, 65–97.
23 T. B. Potocky, A. K. Menon and S. H. Gellman, J. Biol. Chem., 2003,
278, 50188–50194.
24 J. P. Richard, K. Melikov, E. Vives, C. Ramos, B. Verbeure, M. J.
Gait, L. V. Chernomordik and B. Lebleu, J. Biol. Chem., 2003, 278,
585–590.
DG = −RTln KD
(5)
as a function of temperature (R = 8.315 J K−1 mol−1, T = 298 K,
Fig. 10B). Additional thermodynamic data were obtained using
eqn. (6)
DG = DH − TDS.
Data analysis was done with Kaleidagraph, version 3.5
(Synergy Software).
(6)
4.7 Pyrene excimers, anion competition assay
To solutions of pyrene sulfate 8 (120 lM) and anions 1, 2, 10–
20 (appropriate concentration; c/lM) in buffer (2 ml, 10 mM
NamHnPO4, 107 M NaCl, pH 7.4), pR (2.5 lM) was added.
The solutions were gently mixed and the fluorescence emission
spectra were measured with kex 340 nm at 25 C (12, Fig. 12).
The obtained spectra were normalized as above and analyzed
using the eqn. (7)
◦
25 G. Zuber, E. Dauty, M. Nothisen, P. Belguise and J.-P. Behr, Adv.
EM
EM
IEM = I0 + (I∞ − I0EM)/[1 + (IC50/c)n]
(7)
Drug Delivery Rev., 2001, 52, 245–253.
26 A. D. Miller, Curr. Med. Chem., 2003, 10, 1195–1211.
27 E. Nakamura and H. Isobe, Acc. Chem. Res., 2003, 36, 807–815.
28 W. M. Yau, W. C. Wimley, K. Gawrisch and S. H. White, Biochem-
istry, 1998, 37, 14713–14718.
analogous to eqn. (4) to obtain inhibitory constants IC50 error.
Further analysis using the Cheng–Prusoff equation to estimate
KI values was possible.73,74
29 M. Schiffer, C. H. Chang and F. J. Stevens, Protein Eng., 1992, 5,
213–214.
4.8 Coronene fluorescence
30 R. MacKinnon, S. L. Cohen, A. Kuo, A. Lee and B. T. Chait, Science,
1998, 280, 106–109.
Solutions of coronene anion 3 (0.12–12 lM) in buffer (2 ml,
10 mM NamHnPO4, 100 mM NaCl, pH 7.4) were placed in a cu-
vette. Then, pR was added stepwise and the solutions were gently
mixed. Fluorescence emission spectra of the resulting solutions
were measured with kex 340 nm at 25 ◦C. The obtained spectra
were normalized to maximal monomer emission intensity at
427 nm (Fig. 11) and analyzed as described for pyrenes.
31 W. C. Wimley, Curr. Opin. Struct. Biol., 2003, 13, 404–411.
32 A. N. J. A. Ridder, S. Morein, J. G. Stam, A. Kuhn, B. de Kruijff and
J. A. Killian, Biochemistry, 2000, 39, 6521–6528.
33 M. R. R. De Planque, J. A. W. Kruijtzer, R. M. J. Liskamp, D. Marsh,
D. V. Greathouse, R. E. Koeppe II, B. de Kruijff and J. A. Killian,
J. Biol. Chem., 1999, 274, 20839–20846.
34 M. R. R. De Planque, B. B. Bonev, J. A. A. Demmers, D. V.
Greathouse, R. E. Koeppe II, F. Separovic, A. Watts and J. A. Killian,
Biochemistry, 2003, 42, 5341–5348.
35 J. M. Sanderson and E. J. Whelan, Phys. Chem. Chem. Phys., 2004,
6, 1012–1017.
36 S. Matile, A. Som and N. Sorde´, Tetrahedron, 2004, 60, 6405–6435.
37 G. W. Gokel and A. Mukhopadhyay, Chem. Soc. Rev., 2001, 30,
274–286.
Acknowledgements
We thank D. Jeannerat, A. Pinto and J.-P. Saulnier for NMR
measurements, P. Perrottet and the group of F. Gu¨lac¸ar for
MS, and the Swiss NSF (including National Research Program
“Supramolecular Functional Materials” 4047-057496, SM),
Japan Science and Technology Agency (JST) (SF), Delta
Proteomics (ANL) and the CNRS (AWC) for financial support.
38 S. E. Thompson and D. B. Smithrud, J. Am. Chem. Soc., 2002, 124,
442–449.
39 K. A. Schug and W. Lindner, Chem. Rev., 2005, 105, 67–114.
40 K. Ariga and T. Kunitake, Acc. Chem. Res., 1998, 31, 371–378.
41 M. D. Best, S. L. Tobey and E. V. Anslyn, Coord. Chem. Rev., 2003,
240, 3–15.
42 P. Breccia, M. Van Gool, R. Perez-Fernandez, S. Martin-Santamaria,
F. Gago, P. Prados and J. de Mendoza, J. Am. Chem. Soc., 2003, 125,
8270–8284.
References
1 N. Sakai and S. Matile, J. Am. Chem. Soc., 2003, 125, 14348–14356.
2 N. Sakai, T. Takeuchi, S. Futaki and S. Matile, ChemBioChem, 2005,
6, 114–122.
3 L. Monticelli, K. M. Robertson, J. L. MacCallum and D. P. Tieleman,
FEBS Lett., 2004, 564, 325–332.
4 Y. Jiang, A. Lee, J. Chen, V. Ruta, M. Cadene, B. T. Chait and R.
MacKinnon, Nature, 2003, 423, 33–41.
43 M. Berger and F. P. Schmidtchen, J. Am. Chem. Soc., 1999, 121,
9986–9993.
44 X. Salvatella, M. W. Peczuh, M. Giar´ı, R. K. Jain, J. Sa´nchez-
Quesada, J. de Mendoza, A. D. Hamilton and E. Giralt, Chem.
Commun., 2000, 1399–1400.
5 Y. Jiang, V. Ruta, J. Chen, A. Lee and R. MacKinnon, Nature, 2003,
423, 42–48.
45 B. P. Orner, X. Salvatella, J. Sa´nchez-Quesada, J. de Mendoza, E.
Giralt and A. D. Hamilton, Angew. Chem., Int. Ed., 2002, 41, 117–
119.
46 R. A. Kumpf and D. A. Dougherty, Science, 1993, 261, 1708–1710.
47 J. P. Gallivan and D. A. Dougherty, Proc. Natl. Acad. Sci. U. S. A.,
1999, 96, 9459–9464.
6 R. B. Bass, P. Strop, M. Barclay and D. C. Rees, Science, 2002, 298,
1582–1587.
7 D. Terrone, S. Leung, W. Sang, L. Roudaia and J. R. Silvius,
Biochemistry, 2003, 42, 13787–13799.
8 J. B. Rothbard, T. C. Jessop, R. S. Lewis, B. A. Murray and P. A.
Wender, J. Am. Chem. Soc., 2004, 126, 9506–9507.
9 F. Perret, M. Nishihara, T. Takeuchi, S. Futaki, A. N. Lazar, A. W.
Coleman, N. Sakai and S. Matile, J. Am. Chem. Soc., 2005, 127,
1114–1115.
10 N. Sakai, N. Sorde´, G. Das, P. Perrottet, D. Gerard and S. Matile,
Org. Biomol. Chem., 2003, 1, 1226–1231.
48 F. M. Menger, Biochemistry, 1992, 31, 5368–5373.
49 O. T. Jones and A. G. Lee, Biochemistry, 1985, 24, 2195–2202.
50 J. Martins and E. Melo, Biophys. J., 2001, 80, 832–840.
51 C. Bingel, Chem. Ber., 1993, 126, 1957–1959.
52 I. Lamparth and A. Hirsh, J. Chem. Soc., Chem. Commun., 1994,
1727–1728.
53 S. Foley, C. Crowley, M. Smaihi, C. Bonfils, B. F. Erlanger, P. Seta
and C. Larroque, Biochem. Biophys. Res. Commun., 2002, 294, 116–
119.
11 S. Futaki, Arginine-rich Peptides, Curr. Protein Pept. Sci., 2003, 4,
87–157.
1 6 6 8
O r g . B i o m o l . C h e m . , 2 0 0 5 , 3 , 1 6 5 9 – 1 6 6 9