E. Roulland et al. / Tetrahedron Letters 46 (2005) 4065–4068
4067
reprotonation of the enolate of nitrile 16 is planned
for the inversion of the C14 stereochemistry.
Acknowledgments
Dr. Yves Janin and Professor David Aitken are
acknowledged for fruitful discussions.
References and notes
1. (a) Chou, T.; Kuramoto, M.; Otani, Y.; Shikano, M.;
Yazawa, K.; Uemura, D. Tetrahedron Lett. 1996, 37,
3871–3874; (b) Kuramoto, M.; Tong, C.; Yamada, K.;
Chiba, T.; Hayashi, D.; Uemura, D. Tetrahedron Lett.
1996, 37, 3867–3870.
Figure 1. ORTEP drawing of 16.
13 was selectively reduced into alcohol 14 and finally
protected as a silyl ether 15.
2. Husson, H.-P.; Royer, J. Chem. Soc. Rev. 1999, 28, 383–
394.
3. (a) Carson, M. W.; Kim, G.; Hentemann, M. F.; Trauner,
D.; Danishefsky, S. J. Angew. Chem., Int. Ed. 2001, 40,
4450–4452; (b) Carson, M. W.; Kim, G.; Danishefsky, S.
J. Angew. Chem., Int. Ed. 2001, 40, 4453–4456.
4. (a) Matsumura, Y.; Aoyagi, S.; Kibayashi, C. Org. Lett.
2004, 6, 965–968; (b) Matsumura, Y.; Aoyagi, S.; Kiba-
yashi, C. Org. Lett. 2003, 5, 3249–3252; (c) Takasu, K.;
Ohsato, H.; Ihara, M. Org. Lett. 2003, 5, 3017–3020; (d)
Hayakawa, I.; Arimoto, H.; Uemura, D. Heterocycles
2003, 59, 441–444; (e) Yokota, W.; Shindo, M.; Shishido,
K. Heterocycles 2001, 54, 871–885; (f) White, J. D.;
Blakemore, P. R.; Paul, R.; Korf, E. A.; Yokochi, A. F. T.
Org. Lett. 2001, 3, 413–415; (g) Wright, D. L.; Schulte, J.
P., II; Page, M. A. Org. Lett. 2000, 2, 1847–1850; (h)
Koviach, J. L.; Forsyth, G. J. Tetrahedron Lett. 1999, 40,
8529–8532; (i) Clive, D. J. L.; Yeh, V. S. C. Tetrahedron
Lett. 1999, 40, 8503–8507; (j) Lee, S.; Zhao, Z. Tetrahe-
dron Lett. 1999, 40, 7921–7924; (k) Lee, S.; Zhao, Z.
Org. Lett. 1999, 1, 681–683; (l) Arimoto, H.; Asano, S.;
Uemura, D. Tetrahedron Lett. 1999, 40, 3583–3586.
5. Zhu, J.; Quirion, J.-C.; Husson, H.-P. J. Org. Chem. 1993,
58, 6451–6456.
6. Ribeiro, C. M. R.; de Melo, S. J.; Bonin, M.; Quirion,
J.-C.; Husson, H.-P. Tetrahedron Lett. 1994, 35, 7227–
7230.
7. Rathke, M. W.; Sullivan, D. F. Synth. Commun. 1973,
3(1), 67–72.
8. The structures of all new products are supported by
1H, 13C NMR spectra and HRMS data.
9. (a) Erickson, K. L.; Markstein, J.; Kim, K. J. Org. Chem.
1971, 36, 1024–1030; (b) Garratt, P.; Doecke, C. W.;
Weber, J. C.; Paquette, L. A. J. Org. Chem. 1986, 51, 449–
452.
The alkylation of 15 in THF at À78 °C in the presence
of 1.5equiv of HMPA and LDA as a base gave com-
pound 1614 with high control of the C14 stereochemistry
(97% de). As expected, the alkylation of this a,b-unsat-
urated nitrile occurs a along with a double bond shift.15
Unfortunately, we obtained the unnatural stereochemis-
try at C14 as demonstrated by X-ray analysis performed
on compound 1616 (Fig. 1).
The nitrile function of 16 was reduced to alcohol 18 via
aldehyde 17. It was then possible to perform the planned
hydrogenation of the cyclopentene ring of 18 without
the over-reduction we encountered with the a,b-unsatu-
rated nitrile 12. Thus, a palladium-catalysed hydrogen-
ation of the C12–C13 double bond, performed under
pressure (5bar), led to compound 1917 as the sole diaste-
reomer. Despite NOESY 1H NMR experiments, the
C13 stereochemistry of compound 19 could not be
determined. Nevertheless, the course of a heterogeneous
phase hydrogenation reaction is predictable in the case
of a space-congested molecule. Thus, the fact that no
hydrogenation of the benzylic C–N bond took place
and that the methylation of 15 at C14 specifically pro-
ceeds on one side, suggests a strong steric hindrance in
this area of the molecule. This is plausible, as compound
18 bears two bulky TBS protective groups. This hin-
drance is probably at the origin of this face-selective
hydrogenation of the cyclopentene B-cycle that leads
to the correct stereochemistry at C13. Moreover, the
MM2 calculation of the lowest energy conformation of
compound 18 (Scheme 5) confirms that one face in
ring-B is far less congested than the other.
10. Berrien, J.-F.; Billion, M.-A.; Husson, H.-P.; Royer, J.
J. Org. Chem. 1995, 60, 2922–2924.
11. (a) Profitt, J. A.; Watt, D. S. J. Org. Chem. 1975, 40, 127–
128; (b) Osborn, M. E.; Kuroda, S.; Muthard, J. L.;
Kramer, J. D.; Engel, P.; Paquette, L. A. J. Org. Chem.
1981, 46, 3379–3388.
3. Conclusion
ˆ
12. Angibeaud, P.; Larcheveque, M.; Normant, H.; Tchoubar,
B. Bull. Chem. Soc. Chim. Fr. 1968, 595–600.
This work demonstrates that the enantiopure spiranic
core of pinnaic acid alkaloid 1 can be successfully built
using the CN(R,S) strategy. Further progress in pinnaic
acid total synthesis will focus on the stereochemical
inversion of the C5and C14 centres. At a final stage,
the internal 1-6 retro-Michael/Michael equilibration3
is envisaged to control C5stereochemistry. A kinetic
13. (a) Narisada, M.; Horibe, I.; Watanabe, F.; Takeda, K.
J. Org. Chem. 1985, 54, 5308–5313; (b) Osborn; Pegues,
J.F.; Paquette, L. A. J. Org. Chem. 1980, 45, 167–168.
14. Spectroscopic data for compound 16: colourless crystal
recryst from hexane, mp: 139 °C, 1H (400 MHz, CDCl3) d
0.04 (two s, 6H), 0.09 (two s, 6H), 0.93 (s, 18 H), 1.10–1.45
(m, 5H), 1.46 (d, 3H, J = 7.2 Hz), 1.59–1.88 (m, 5H), 2.20