Letters
Journal of Medicinal Chemistry, 2005, Vol. 48, No. 11 3691
(6) Stock, P. G. The year in review - ATC 2002. Am. J. Transplant.
2003, 3, 373-380.
(7) Asano, N.; Nash, R. J.; Molyneux, R. J.; Fleet, G. W. J. Sugar-
mimic glycosidase inhibitors: natural occurrence, biological
activity and prospects for therapeutic application. Tetrahedron:
Asymmetry 2000, 11, 1645-1680.
(8) Dwek, R. A. Glycobiology: Toward understanding the function
of sugars. Chem. Rev. 1996, 96, 683-720.
(9) Lillelund, V. H.; Jensen, H. H.; Liang, X.; Bols, M. Recent
developments of transition-state analogue glycosidase inhibitors
of non-natural product origin. Chem. Rev. 2002, 102, 515-553.
(10) Stu¨tz, A. E. Iminosugars as Glycosidase Inhibitors: Nojirimycin
and Beyond; Wiley-VCH: Weinheim, 1999.
(11) Andersen, B.; Rassov, A.; Westergaard, N.; Lundgren, K. Inhibi-
tion of glycogenolysis in primary rat hepatocytes by 1,4-dideoxy-
1,4-imino-d-arabinitol. Biochem. J. 1999, 342, 545-550.
(12) Durantel, D.; Branza-Nichita, N.; Carrouee-Durantel, S.; But-
ters, T. D.; Dwek, R. A.; Zitzmann, N. Study of the mechanism
of antiviral action of iminosugar derivatives against bovine viral
diarrhea virus. J. Virol. 2001, 75, 8987-8998.
(13) Goss, P. E.; Baker, M. A.; Carver, J. P.; Dennis, J. W. Inhibitors
of carbohydrate processing: A new class of anticancer agents.
Clin. Cancer Res. 1995, 1, 935-944.
(14) Sawkar, A. R.; Cheng, W.-C.; Beutler, E.; Wong, C.-H.; Balch,
W. E.; Kelly, J. W. Chemical chaperones increase the cellular
activity of N370S beta-glucosidase: A therapeutic strategy for
Gaucher disease. Proc. Natl. Acad. Sci. U.S.A. 2002, 99, 15428-
15433.
(15) Hohenschutz, L. D.; Bell, E. A.; Jeweess, P. J. Castanospermine,
a 1,6,7,8-tetrahydroxyoctahydroindolizine alkaloid, from seeds
of Castanospermum Australe. Phytochemistry 1981, 20, 811-
814.
(16) Grochowicz, P. M.; Hibberd, A. D.; Smart, Y. C.; Bowen, K. M.;
Clark, D. A.; Cowden, W. B.; Willenborg, D. O. Castanospermine,
an oligosaccharide processing inhibitor, reduces membrane
expression of adhesion molecules and prolongs heart allograft
survival in rats. Transplant Immunol. 1996, 4, 275-285.
(17) Walter, S.; Fassbender, K.; Gulbins, E.; Liu, Y.; Rieschel, M.;
Herten, M.; Bertsch, T.; Engelhardt, B. Glycosylation processing
inhibition by castanospermine prevents experimental autoim-
mune encephalomyelitis by interference with IL-2 receptor signal
transduction. J. Neuroimmunol. 2002, 132, 1-10.
(18) Wall, K. A.; Pierce, J. D.; Elbein, A. D. Inhibitors of glycoprotein
processing alter T-Cell proliferative responses to antigen and
to interleukin 2. Proc. Natl. Acad. Sci. U.S.A. 1988, 85, 5644-
5648.
(19) Koto, S.; Morishima, N.; Miyata, Y.; Zen, S. Preparation of
2,3,4,6-tetra-O-benzyl-D-mannose. Bull. Chem. Soc. Jpn. 1976,
49, 2639-2640.
immunosuppressive effects by these iminosugars may
hold possibly the N-glycoprotein-processing inhibition
effects on these glycoproteins. The data present here
demonstrated that compared with the synthetic D-
galacto type of iminosugars, the L-altro type of imino-
sugars had stronger reduction effects on the immune
system. The cytokines (e.g. IFN-γ) secreted by the Th1
subset act primarily in cell-mediated response, whereas
those (e.g. IL-4) secreted by the Th2 subset function
mostly in B-cell activation and humoral response. The
compound 2 had the strongest inhibition effects on both
secretion of IFN-γ and IL-4 among these compounds and
therefore might hold reduction efficiency to both hu-
moral response and cell-mediated immune system. On
the other hand, compound 5 had specifically the strong-
est effects on the secretion of IL-4 and only minor
inhibition effects on the secretion of IFN-γ and therefore
might have inhibition efficiency to the Th2-mediated
humoral immune reaction. Both compound 2 and 5
inhibited the expression of CD3, CD4, and CD19, so that
they may specifically inhibit the function of CD4+T cells
and B cells. However, compounds 2 and 5 had some
stimulating effects on the expression of CD8 molecules.
The mechanisms of these differences are not well-
known.
Our study first found that L-altro iminosugars 2 and
5 are much less toxic than CyA, which is a well-known
immunosuppressive drug. Our results demonstrated
that synthetic iminosugars, especially the L-altro type
of iminosugars, hold the potential as immunosuppres-
sive agents. In summary, the described findings may
open a new avenue in the development of a new class
of drugs possessing immunosuppressive activity.
Acknowledgment. This work was financially sup-
ported by the National Natural Science Foundation of
China (No. 20172005 and 20372004 for X.Y., No.
30370310 and 30270076 for X.Z.), and the Fund for
Oversea Returnee of National Educational Ministry of
China, the Scientific Research Grant (No: 2002AA301-
B15) from Hubei Province (X.Z.), and Peking University
(X.Y.).
(20) Zhang, Z.; Ollmann, I. R.; Ye, X.-S.; Wischnat, R.; Baasov, T.;
Wong, C.-H. Programmable one-pot oligosaccharide synthesis.
J. Am. Chem. Soc. 1999, 121, 734-753.
(21) Martin, O. R.; Saavedra, O. M.; Xie, F.; Liu, L.; Picasso, S.; Vogel,
P.; Kizu, H.; Asano, N. alpha- and beta-homogalactonojirimycins
(alpha- and beta-homogalactostatins): Synthesis and further
biological evaluation. Bioorg. Med. Chem. 2001, 9, 1269-1278.
(22) Liu, P. S. Total synthesis of 2,6-dideoxy-2,6-imino-7-O-(.beta.-
Supporting Information Available: Full experimental
procedures and characterization data for all compounds. This
material is available free of charge via Internet at http://
pubs.acs.org.
D-glucopyranosyl)-D-glycero-L-gulo-heptitol hydrochloride.
potent inhibitor of.alpha.-glucosidases. J. Org. Chem. 1987, 52,
A
References
(1) Myers, B. D.; Sibley, R.; Newton, L.; Tomlanovich, S. J.; Boshkos,
C.; Stinson, E.; Luetscher, J. A.; Whitney, D. J.; Krasny, D.;
Coplon, N. S. et al. The long-term course of cyclosporine-
associated chronic nephropathy. Kidney Int. 1988, 33, 590-600.
(2) Brayman, K. L.; Stephanian, E.; Matas, A. J.; Schmidt, W.;
Payne, W. D. Sutherland, D. E. R. Analysis of infectious
complications occurring after solid organ transplantation. Arch.
Surg. 1992, 127, 38-48.
4717-4721.
(23) Shilvock, J. P.; Nash, R. J.; Watson, A. A.; Winters, A. L.;
Butters, T. D.; Dwek, R. A.; Winkler, D. A.; Fleet, G. W. J.
Piperidine analogues of D-galactose as potent inhibitors of
R-galactosidase: Synthesis by stannane-mediated hydroxym-
ethylation of 5-azido-1,4-lactose. Structural relationships be-
tween D-galactosidase and L-rhamnosidase inhibitors. J. Chem.
Soc., Perkin Trans. 1 1999, 2747-2754.
(24) Zhang, X.-L.; Liu, M.; Xie, P.; Wan, S.; Ye, J. T.; Zhou, X.; Wu,
J. Specific inhibition effects of N-pentafluorobenzyl-1-deoxy-
nojirimycin on human CD4+ T cells. Bioorg. Med. Chem. Lett.
2004, 14, 3789-3792.
(3) Sheil, A. G. R. Cancer in organ transplant recipients: part of
an induced immune deficiency syndrome. Br. Med. J. 1984, 288,
659-670.
(4) Ganadian Multicentre Transplant Study Group, A randomized
clinical trial of cyclosporine in cadaveric renal transplantation.
N. Engl. J. Med. 1983, 309, 809-815.
(5) Changelian, P. S.; Flanagan, M. E.; Ball, D. J.; Kent, C. R.;
Magnuson, K. S.; Martin, W. H.; Rizzuti, B. J.; Sawyer, P. S.;
Perry, B. D.; Brissette, W. H. et al. Prevention of organ allograft
rejection by a specific Janus kinase 3 inhibiter. Science 2003,
302, 875-878.
(25) Sallustro, F.; Lanzavecchia, A.; Mackay, C. R. Chemokines and
chemokine receptors in T-cell priming and Th1/Th2-mediated
responses. Immunol Today 1998, 19, 568-574.
JM050169T