COMMUNICATIONS
References
of the benzene ring generally afforded high enantiose-
lectivity (90–96% ee, entries 4–6), albeit the one with
3-CO2Me required a longer reaction time (6 h) for
full conversion and gave lower yield. On the contrary,
when an electron-donating group was introduced at
the 3-position of the benzene ring, the enantioselec-
tivity decreased (entries 7 and 8). The substituents at
the 4-position of the benzene ring also significantly af-
fected the outcomes of the reaction: the chloro sub-
stituent gave excellent enantioselectivity (96% ee,
entry 9), while the fluoro and ester substituents af-
forded lower enantioselectivity (76% ee and 86% ee,
respectively, entries 10 and 11). The absolute configu-
ration of 3a was determined to be R by comparing
the specific optical rotation with the reported data
(entry 1).[15]
[1] For reviews, see: a) M. P. Doyle, M. A. McKervey, T.
Ye, Modern catalytic methods for organic synthesis with
diazo compounds: from cyclopropanes to ylides, John
Wiley & Sons, Inc., New York, 1998; b) Z. Zhang, J.
Wang, Tetrahedron 2008, 64, 6577–6605; c) A. Ford, H.
Miel, A. Ring, C. N. Slattery, A. R. Maguire, M. A.
McKervey, Chem. Rev. 2015, 115, 9981–10080.
[2] For reviews, see: a) S.-F. Zhu, Q.-L. Zhou, Acc. Chem.
Res. 2012, 45, 1365–1377; b) D. Gillingham, N. Fei,
Chem. Soc. Rev. 2013, 42, 4918–4931; c) S.-F. Zhu, Q.-
L. Zhou, Nat. Sci. Rev. 2014, 1, 580–603.
[3] a) B. Liu, S.-F. Zhu, W. Zhang, C. Chen, Q.-L. Zhou, J.
Am. Chem. Soc. 2007, 129, 5834–5835; b) E. C. Lee,
G. C. Fu, J. Am. Chem. Soc. 2007, 129, 12066–12067;
c) Z.-R. Hou, J. Wang, P. He, J. Wang, B. Qin, X.-H.
Liu, L.-L. Lin, X.-M. Feng, Angew. Chem. 2010, 122,
4873–4876; Angew. Chem. Int. Ed. 2010, 49, 4763–4766.
[4] X.-F. Xu, P. Y. Zavalij, M. P. Doyle, Angew. Chem.
2012, 124, 9967–9971; Angew. Chem. Int. Ed. 2012, 51,
9829–9833.
[5] Y. Zhu, X. Liu, S. Dong, Y. Zhou, W. Li, L. Lin, X.
Feng, Angew. Chem. 2014, 126, 1662–1666; Angew.
Chem. Int. Ed. 2014, 53, 1636–1640.
[6] a) B. Xu, S.-F. Zhu, X.-L. Xie, J.-J. Shen, Q.-L. Zhou,
Angew. Chem. 2011, 123, 11685–11688; Angew. Chem.
Int. Ed. 2011, 50, 11483–11486; b) B. Xu, S.-F. Zhu, X.-
D. Zuo, Z.-C. Zhang, Q.-L. Zhou, Angew. Chem. 2014,
126, 3994–3997; Angew. Chem. Int. Ed. 2014, 53, 3913–
3916; c) J.-X. Guo, T. Zhou, B. Xu, S.-F. Zhu, Q.-L.
Zhou, Chem. Sci. 2016, 7, 1104–1108.
In summary, we have developed a highly enantiose-
À
lective copper-catalyzed intramolecular N H bonds
insertion reaction, which provided a new method for
the synthesis of chiral 2-carboxytetrahydroquinolines.
The fast reaction rate, high yield, high enantioselectiv-
ity of the reaction further demonstrate the power of
À
these catalytic asymmetric X H bond insertion reac-
tions in organic synthesis.
Experimental Section
Typical Procedure for Copper-Catalyzed Asymmetric
À
Intramolecular N H Bond Insertion
[7] a) T. N. Salzmann, R. W. Ratcliffe, B. G. Christensen,
F. A. Bouffard, J. Am. Chem. Soc. 1980, 102, 6161–
6163; b) S. Yamamoto, H. Itani, H. Takahashi, T. Tsuji,
W. Nagata, Tetrahedron Lett. 1984, 25, 4545–4548;
c) M. P. Moyer, P. L. Feldman, H. Rapoport, J. Org.
Chem. 1985, 50, 5223–5230; d) J. M. Liu, J. J. Young,
Y. J. Li, C. K. Sha, J. Org. Chem. 1986, 51, 1120–1123;
e) R. M. Williams, B. H. Lee, M. M. Miller, O. P. An-
derson, J. Am. Chem. Soc. 1989, 111, 1073–1081; f) S.
Hanessian, J.-M. Fu, J.-L. Chiara, R. D. Fabio, Tetrahe-
dron Lett. 1993, 34, 4157–4160; g) F. A. Davis, B. Yang,
J. Deng, J. Org. Chem. 2003, 68, 5147–5152; h) Q.-H.
Deng, H.-W. Xu, A. W.-H. Yuen, Z.-J. Xu, C.-M. Che,
Org. Lett. 2008, 10, 1529–1532.
CuCl2 (2.7 mg, 0.02 mmol, 5 mol%), (Sa,S,S)-1a (8.6 mg,
0.024 mmol, 6 mol%) and NaBArF (22.6 mg, 0.024 mmol,
6 mol%) were added into an oven-dried Schlenk tube.
CH2Cl2 (3 mL) was injected via syringe and the mixture was
stirred at 258C for 2 h, followed by addition of the diazo
compound 2a (0.4 mmol, dissolved in 1 mL of CH2Cl2). The
resulting mixture was stirred for 5 min. After removing the
solvent under vacuum, the residue was chromatographed on
silica gel (petroleum ether/ethyl acetate=8:1) to give prod-
uct 3a as a colorless oil; yield: 85%. 1H NMR (400 MHz,
CDCl3): d=7.01 (t, J=7.7 Hz, 1H), 6.97 (d, J=7.4 Hz, 1H),
6.66 (t, J=7.1 Hz, 1H), 6.60 (d, J=8.0 Hz, 1H), 4.37 (s,
1H), 4.05 (dd, J=8.8 and 3.7 Hz, 1H), 3.78 (s, 3H), 2.90–
2.70 (m, 2H), 2.35–2.24 (m, 1H), 2.08–1.95 (m, 1H); 91% ee
by HPLC (conditions: Daicel AD-H column, n-hexane/2-
propanol=90:10, flow rate=1.0 mLminÀ1, wavelength=
254 nm): tR =8.65 min for major isomer, tR =10.30 min for
minor isomer; [a]22: À37.9 (c 1.05, CHCl3); Lit.[15] [a]D:
À33.9 (c 0.36, CHCDl3) for (R)-3a.
[8] C. F. Garcꢂa, M. A. McKervey, T. Ye, Chem. Commun.
1996, 1465–1466.
[9] a) P. D. Leeson, R. W. Carling, K. W. Moore, A. M. Mo-
seley, J. D. Smith, G. Stevenson, T. Chan, R. Baker,
A. C. Foster, J. Med. Chem. 1992, 35, 1954–1968;
b) R. W. Carling, P. D. Leeson, A. M. Moseley, J. D.
Smith, K. Saywell, M. D. Tricklebank, J. A. Kemp,
G. R. Marshall, A. C. Foster, S. Grimwood, Bioorg.
Med. Chem. Lett. 1993, 3, 65–70.
[10] I. Jacquemond-Collet, S. Hannedouche, N. Fabre, I.
Fourastꢃ, C. Moulis, Phytochemistry 1999, 51, 1167–
1169.
Acknowledgements
We thank the National Natural Science Foundation of China,
the National Basic Research Program of China
(2012CB821600), the “111” project (B06005) of the Ministry
of Education of China, and the National Program for Sup-
port of Top-notch Young Professionals for financial support.
[11] A. Kannenberg, D. Rost, S. Eibauer, S. Tiede, S. Ble-
chert, Angew. Chem. 2011, 123, 3357–3360; Angew.
Chem. Int. Ed. 2011, 50, 3299–3302.
Adv. Synth. Catal. 0000, 000, 0 – 0
4
ꢁ 2016 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
ÞÞ
These are not the final page numbers!