C O M M U N I C A T I O N S
displays little dependence upon the electronic and steric nature of
the aryl iodide. Electron-poor and electron-rich substrates (entries
4 and 6) as well as ortho-, meta-, and para-substituted iodides
(entries 8, 7, and 4) all reacted completely in under 1 h. Notably,
(unprotected) 2-iodobenzyl alcohol was a viable substrate for the
cross-coupling, affording an 89% yield after 12 h (entry 12). Vinyl
iodides could also be engaged in the fluoride-promoted coupling
to prepare conjugated trienes. Reaction of 2a with ethyl (E)-3-
iodoacrylate, albeit slower than that of aryl substrates, provided
triene 3i in 72% yield after 4 h (entry 10). The overall yield of the
two-step coupling process could be improved by subjecting the
crude products obtained from the KOTMS-activated coupling to
the TBAF-promoted coupling conditions. In this manner, 1,4-diaryl-
1,3-butadienes 3b and 3d were prepared in enhanced yield relative
to the two-step procedure (86 vs 77% and 84 vs 72%, respectively)
without any loss in reaction rate or selectivity.
the 2-thienyl group was dispatched without incident, and the
fluoride-promoted cross-coupling of 5 with ethyl 4-iodobenzoate
provided the 1,4-diaryl-1,3-butadiene 6a bearing two electron-
withdrawing substituents.
In conclusion, we have demonstrated the ability to differentiate
the termini of a 1,4-bissilyl-1,3-diene by taking advantage of the
mechanistic duality in silicon-based cross-coupling reactions.
Through the use of substrates bearing two distinct silyl subunits
and complementary reaction promoters KOTMS and TBAF, this
approach allows for the construction of unsymmetrical disubstituted
1,4-butadienes. Extension of this method to the preparation of
substituted butadienes, geometric isomers of the butadienes, and
tetraenes is in progress.
Acknowledgment. We are grateful to the National Institutes
of Health for generous financial support. (GM 63167).
Whereas the electronic character of the iodide coupling partner
did not influence the reaction rate, the electronic nature of the
benzylsilanes has a significant effect on the fluoride-promoted
coupling. Cross-coupling with electron-rich substrate 2c (derived
from an initial coupling with 4-iodoanisole) was significantly faster
than the corresponding reactions with silane 2a (derived from an
initial coupling with 4-iodotoluene) (entries 1 and 4). Although the
increased reactivity of 2c is consistent with a turnover limiting
transmetalation to an electrophilic arylpalladium(II) intermediate,10a
the distance over which the electronic perturbation influences the
reaction is surprising. Unfortunately, this electronic influence
extends to benzylsilanes bearing electron-withdrawing substituents,
making then poor substrates for the fluoride-promoted coupling.
Under fluoride activation, migration of the benzyl group to the
diene, as recently demonstrated by Trost,16 is competitive with
cross-coupling. Attempts to unmask the latent silanol under acidic
conditions resulted in desilylation of the diene.
To overcome the problematic benzyl migration, bissilane 4, in
which a 2-thienyl group replaces the benzyl group, was prepared.15
It was expected that the 2-thienylsilane would survive the initial
cross-coupling and provide the desired silanol upon treatment with
fluoride without migration.12 Gratifyingly, KOTMS cleanly and
efficiently promoted the cross-coupling of 4 with 4-iodoacetonitrile
to afford 5 in 83% yield (Scheme 1). Most importantly, though,
Supporting Information Available: Preparation of 1 and 4,
detailed experimental procedures, and full characterization of all
products. This material is available free of charge via the Internet at
References
(1) Thirsk, C.; Whiting, A. J. Chem. Soc., Perkin Trans. 1 2002, 999-1023.
(2) For applications of polyenes in nonlinear optics, see the special issue:
Chem. Phys. 1999, 245.
(3) (a) Mori, Y.; Asai, M.; Kawade, J.; Furukawa, H. Tetrahedron 1995, 51,
5315-5330. (b) Nicolaou, K. C.; Daines, R. A.; Chakraborty, T. K.;
Ogawa, Y. J. Am. Chem. Soc. 1988, 110, 4685-4696. (c) Patel, P.;
Pattenden, G. J. Chem. Soc., Perkin Trans. 1 1991, 8, 1941-1946.
(4) Representative examples: (a) Zeng, F.; Negishi, E. Org. Lett. 2002, 4,
703-706. (b) Dominguez, B.; Iglesias, B.; de Lera, A. R. Tetrahedron
1999, 55, 15071-15098. (c) Lipshutz, B. H.; Ullman, B.; Lindsley, C.;
Pecci, S.; Buzard, D. J.; Dickson, D. J. Org. Chem. 1998, 63, 6092-
6093. (d) Torrado, A.; Iglesias, B.; Lopez, S.; de Lera, A. R. Tetrahedron
1995, 51, 2435-2454.
(5) Representative examples: (a) Zimmermann, E. K.; Stille, J. K. Macro-
molecules 1985, 18, 321-327. (b) Thibonnet, J.; Abarbri, M.; Parrain, J.;
Duchene, A. Synlett 1997, 771-772. (c) Andersen, D. L.; Back, T. G.;
Janzen, L.; Michalak, K.; Pharis, R. P.; Sung, G. C. Y. J. Org. Chem.
2001, 66, 7129-7141.
(6) (a) Todd, M. H.; Balasubramanian, S.; Abell, C. Tetrahedron Lett. 1997,
38, 6781-6784. (b) Chaumeil, H.; Le Drian, C.; Defoin, A. Synthesis
2002, 757-760. (c) Li, C.; Shien, S.; Lin, S.; Liu, R. Org. Lett. 2003, 5,
1131-1134. (d) Perret-Aebi, L.; von Zelewsky, A. Synlett 2002, 773-
774.
(7) Representative examples: (a) Waterson, A. G.; Kruger, A. W.; Meyers,
A. I. Tetrahedron Lett. 2001, 42, 4305-4308. (b) Anderson, O. P.; Barrett,
A. G. M.; Edmunds, J. J.; Hachiya, S.; Hendrix, J. A.; Horita, K.; Malecha,
J. W.; Parkinson, C. J.; VanSickle, A. Can. J. Chem. 2001, 79, 1562-
1592. (c) In addition, an approach to differentiating 1,6-bisstannanes has
been reported: Sorg, A.; Bruckner, R. Angew. Chem., Int. Ed. 2004, 43,
4523-4526.
Scheme 1
(8) (a) Murakami, M.; Matsuda, T.; Itami, K.; Ashida, S.; Terayama, M.
Synthesis 2004, 9, 1522-1526. (b) Babudri, F.; Farinola, G. M.;
Fiandanese, V.; Mazzone, L.; Naso, F. Tetrahedron 1998, 54, 1085-
1094. (c) Pihko, P. M.; Koskinen, A. M. P. Synlett 1999, 1966-1968.
(9) (a) Denmark, S. E.; Sweis, R. F. In Metal-Catalyzed Cross-Coupling
Reactions; de Meijere, A., Diederich, F., Eds.; Wiley-VCH: Weinheim,
Germany, 2004; Vol. 1, Chapter 4. (b) Denmark, S. E.; Ober, M. H.
Aldrichimica Acta 2003, 36, 75-85. (c) Denmark, S. E.; Sweis, R. F.
Acc. Chem. Res. 2002, 35, 835-846. (d) Denmark, S. E.; Sweis, R. F. J.
Am. Chem. Soc. 2001, 123, 6439-6440. (e) Denmark, S. E.; Wang, Z.
Org Lett. 2001, 3, 1073-1076. (f) Denmark, S. E.; Choi, J.-Y. J. Am.
Chem. Soc. 1999, 121, 5821-5822.
(10) (a) Denmark, S. E.; Sweis, R. F.; Wehrli, D. J. Am. Chem. Soc. 2004,
126, 4865-4875. (b) Denmark, S. E.; Sweis, R. F. J. Am. Chem. Soc.
2004, 126, 4876-4882.
(11) Anderson, J. C.; Munday, R. H. J. Org. Chem. 2004, 69, 8971-8974.
(12) Itami, K.; Nokami, T.; Yoshida, J.-I. J. Am. Chem. Soc. 2001, 123, 5600-
5601.
(13) Trost, B. M.; Machacek, M. R.; Ball, Z. Org. Lett. 2003, 5, 1895-1898.
(14) Hosoi, K.; Nozaki, K.; Hiyama, T. Chem. Lett. 2002, 31, 138-139.
(15) See Supporting Information for the preparation of reagents 1 and 4.
(16) Trost, B. M.; Ball, Z. T. J. Am. Chem. Soc. 2004, 126, 13942-13944.
JA0518373
9
J. AM. CHEM. SOC. VOL. 127, NO. 22, 2005 8005