10.1002/anie.202008350
Angewandte Chemie International Edition
RESEARCH ARTICLE
[17]a) A. F. Henwood, M. Lesieur, A. K. Bansal, V. Lemaur, D. Beljonne, D. G.
Thompson, D. Graham, A. M. Z. Slawin, I. D. W. Samuel, C. S. J. Cazin,
E. Zysman-Colman, Chem. Sci. 2015, 6, 3248-3261; b) B. J. Tardiff, K. D.
Hesp, M. J. Ferguson, M. Stradiotto, Dalton Trans. 2012, 41, 7883-7885;
c) S. Fantasia, S. P. Nolan, Chem. Eur. J. 2008, 14, 6987-6993; d) J.
Bauer, H. Braunschweig, A. Damme, K. Gruß, K. Radacki, Chem.
Commun. 2011, 47, 12783-12785.
[18] For the first report of a PEPPSI precatalyst, see: a) C. J. O'Brien, E. A. B.
Kantchev, C. Valente, N. Hadei, G. A. Chass, A. Lough, A. C.
Hopkinson, M.G. Organ, Chem. Eur. J. 2006, 12, 4743–4748; For
reviews on PEPPSI catalysis, see: b) E. A. Kantchev, C. J. O'Brien, M. G.
Organ, Angew. Chem. Int. Ed. 2007, 46, 2768-2813; Angew. Chem. 2007,
119, 2824-2870; c) C. Valente, M. Pompeo, M. Sayah, M. G. Organ, Org.
Process. Res. Dev. 2014, 18, 180-190; d) M. G. Organ, C. Lombardi,
eEROS, 2016, 1-5; For the seminal isolation of a related bimolecular
Ni0(NHC) complex, see: e) C. H. Lee, D. S. Laitar, P. Mueller, J. P.
Sadighi, J. Am. Chem. Soc. 2007, 129, 13802-13803; For arene
coordinated Ni0(NHC) complexes, see: f) Y. Hoshimoto, Y. Hayashi, H.
Suzuki, M. Ohashi, S. Ogoshi, Organometallics 2014, 33, 1276−1282; g)
N. I. Saper, A. Ohgi, D. W. Small, K. Semba, Y. Nakao, J. F. Hartwig, Nat.
Chem. 2020, 12, 276-283.
Conflict of interest
The authors declare no conflict of interest.
Keywords: bond activation • hydride • oxidative addition •
palladium • hydrogen • catalysis • cross coupling • aniline • N-
heterocyclic carbene NHC• DFT
[1] Applied homogeneous catalysis with organometallic compounds
- A
comprehensive handbook in four volumes, 3. ed. (Eds.: B. Cornils, W. A.
Herrmann, M. Beller, R. Paciello), Wiley-VCH, Weinheim, 2018.
[2] a) J. A. Turner, Science 2004, 305, 972-974; b) N. S. Lewis, D. G.
Nocera, Proc. Natl. Acad. Sci. U.S.A. 2006, 103, 15729-15735.
[3] a) G.-J. t. Brink, I. W. C. E. Arends, G. Papadogianakis, R. A. Sheldon,
Appl. Catal. Gen. 2000, 194-195, 435-442; b) P. Ruiz-Castillo, S. L.
Buchwald, Chem. Rev. 2016, 116, 12564-12649; c) J. Louie, J. F.
Hartwig, Tetrahedron Lett. 1995, 36, 3609-3612.
[19] a) U. Christmann, R. Vilar, Angew. Chem. Int. Ed. 2005, 44, 366-374;
Angew. Chem, 2005, 117, 370-378.
[20]H. Schneider, A. Hock, R. Bertermann, U. Radius, Chem. Eur. J. 2017, 23,
12387-12398.
[21] M. M. Hansmann, M. Melaimi, D. Munz, G. Bertrand, J. Am. Chem. Soc.
2018, 140, 2546-2554.
[22] H. Werner, Angew. Chem. Int. Ed. 2010, 49, 4714-4728; Angew. Chem.
2010, 122, 4822-4837.
[4] a) M. S. Driver, J. F. Hartwig, J. Am. Chem. Soc. 1996, 118, 4206-4207;
b) M. S. Driver, J. F. Hartwig, Organometallics 1997, 16, 5706-5715.
[5] a) W. E. Piers, Organometallics 2011, 30, 13-16; b) O. V. Ozerov, Chem.
Soc. Rev. 2009, 38, 83-88; c) J. D. Blakemore, R. H. Crabtree, G. W.
Brudvig, Chem. Rev. 2015, 115, 12974-13005.
[6] C. S. Yeung, V. M. Dong, Chem. Rev. 2011, 111, 1215-1292.
[7] a) O. Blum, D. Milstein, J. Am. Chem. Soc. 2002, 124, 11456-11467; b) D.
Milstein, J. C. Calabrese, I. D. Williams, J. Am. Chem. Soc. 1986, 108,
6387-6389; c) R. Dorta, R. Goikhman, D. Milstein, Organometallics 2003,
22, 2806-2809; d) J. Zhao, A. S. Goldman, J. F. Hartwig, Science 2005,
307, 1080-1082; e) D. Y. Wang, Y. Choliy, M. C. Haibach, J. F. Hartwig,
K. Krogh-Jespersen, A. S. Goldman, J. Am. Chem. Soc. 2016, 138, 149-
163; f) J. Yuwen, Y. Jiao, W. W. Brennessel, W. D. Jones, Inorg. Chem.
2016, 55, 9482-9491; g) R. D. Gillard, B. T. Heaton, D. H. Vaughan, J.
Chem. Soc. A. 1970, 3126-3130; h) K. Tani, A. Iseki, T. Yamagata,
Angew. Chem. Int. Ed. 1998, 37, 3381-3383; Angew. Chem. 1998, 110,
3590-3592; i) T. Yoshida, T. Okano, Y. Ueda, S. Otsuka, J. Am. Chem.
Soc. 1981, 103, 3411-3422; j) R. Dorta, A. Togni, Organometallics 1998,
17, 3423-3428.
[8] a) D. V. Gutsulyak, W. E. Piers, J. Borau-Garcia, M. Parvez, J. Am. Chem.
Soc. 2013, 135, 11776-11779; b) R. M. Brown, J. Borau-Garcia, J. Valjus,
C. J. Roberts, H. M. Tuononen, M. Parvez, R. Roesler, Angew. Chem. Int.
Ed. 2015, 54, 6274-6277; Angew. Chem. 2015, 127, 6372-6375; c) C. C.
Comanescu, V. M. Iluc, Organometallics 2014, 33, 6059-6064.
[9] C. M. Fafard, D. Adhikari, B. M. Foxman, D. J. Mindiola, O. V. Ozerov, J.
Am. Chem. Soc. 2007, 129, 10318-10319.
[23] J. F. Hartwig, F. Paul, J. Am. Chem. Soc. 1995, 117, 5373-5374.
[24] R. Karlsson, J. Chem. Eng. Data 1973, 18, 290-292.
[25] For HCl, see: a) F. Ozawa, T. Ito, Y. Nakamura, A. Yamamoto, J.
Organomet. Chem. 1979, 168, 375-391; b) N. Decharin, B. V. Popp, S. S.
Stahl, J. Am. Chem. Soc. 2011, 133, 13268-13271; For acetic acid, see:
c) M. M. Konnick, B. A. Gandhi, I. A. Guzei, S. S. Stahl, Angew. Chem. Int.
Ed. 2006, 45, 2904-2907; Angew. Chem. 2006, 118, 2970-2973.
[26] V. V. Grushin, Chem. Rev. 1996, 96, 2011-2034.
[27] For a review on computational investigations related to Pd catalysis, see:
T. Sperger, I. A. Sanhueza, I. Kalvet, F. Schoenebeck, Chem. Rev. 2015,
115, 9532-9586.
[28] Calculations using the M06 functional or DLPNO-CCSD(T) give consistent
results (Fig. S62).
[29] For a review dedicated to hemilabile ligands, see: a) P. Braunstein, F.
Naud, Angew. Chem. Int. Ed. 2001, 40, 680-699; Angew. Chem. 2001,
113, 702-722; For
a recent review, which includes a chapter on
hemilabile NHC ligands, see: b) E. Peris, Chem. Rev. 2018, 118, 9988-
10031.
[30] No indication for interaction between water and the imino ligand was
obtained.
[10] a) T. Yoshida, T. Matsuda, T. Okano, T. Kitani, S. Otsuka, J. Am. Chem.
Soc. 1979, 101, 2027-2038; b) D. M. Roundhill, Inorg. Chem. 1970, 9,
254-258; c) T. Yamamoto, K. Sano, A. Yamamoto, Chem. Lett. 1982, 11,
907-910.
[31] D. Wang, D. Astruc, Chem. Rev. 2015, 115, 6621-6686.
[32] For a report on the metal-free amidation of esters using 2 eq. of KOtBu,
see: a) Y.-J. Yoon, J. Park, B. Kim, H.-G. Lee, S.-B. Kang, G. Sung, J.-J.
Kim, S.-G. Lee, Synthesis 2012, 44, 42-50. For a recent report on metal-
free amidation using 3 eq. of LiHMDS, see: b) G. Li, M. Szostak, Nat.
Commun. 2018, 9, 4165.
[33] S. Shi, M. Szostak, Chem. Commun. 2017, 53, 10584-10587.
[34] T. Zhou, G. Li, S. P. Nolan, M. Szostak, Org. Lett. 2019, 21, 3304-3309.
[35] a) T. Ben Halima, J. K. Vandavasi, M. Shkoor, S. G. Newman, ACS Catal.
2017, 7, 2176-2180; b) L. Hie, N. F. Fine Nathel, X. Hong, Y. F. Yang, K.
N. Houk, N. K. Garg, Angew. Chem. Int. Ed. 2016, 55, 2810-2814;
Angew. Chem. 2016, 128, 2860-2864.
[11] a) A. Biffis, P. Centomo, A. Del Zotto, M. Zecca, Chem. Rev. 2018, 118,
2249–2295.
[12] a) C. Yu, J. Sanjosé-Orduna, F. W. Patureau, M. H. Pérez-Temprano,
Chem. Soc. Rev. 2020, 49, 1643-1652; b) S. K. Sinha, T. Bhattacharya,
D. Maiti, React. Chem. Eng. 2019, 4, 244-253.
[13] For phosphine ligands, see: a) B. P. Fors, P. Krattiger, E. Strieter, S. L.
Buchwald, Org. Lett. 2008, 10, 3505-3508; b) F. Ozawa, A. Kubo, T.
Hayashi, Chem. Lett. 1992, 21, 2177-2180; For NHC ligands, see: c) V.
M. Chernyshev, O. V. Khazipov, M. A. Shevchenko, A. Y. Chernenko, A.
V. Astakhov, D. B. Eremin, D. V. Pasyukov, A. S. Kashin, V. P. Ananikov,
Chem. Sci. 2018, 9, 5564-5577
[14] For thematic issues on NHCs, see: a) F. E. Hahn, Chem. Rev. 2018, 118,
9455-9456; b) D. Bourissou, O. Guerret, F. P. Gabbaï, G. Bertrand,
Chem. Rev. 2000, 100, 39-92; For thematic books on NHCs, see: c) S. P.
Nolan, N-Heterocyclic Carbenes: Effective Tools for Organometallic
Synthesis, Wiley-VCH, Weinheim, 2014; d) N-Heterocyclic Carbenes:
From Laboratory Curiosities to Efficient Synthetic Tools. (Ed.: S. Diez-
Gonzalez) Royal Society of Chemistry, Cambridge, 2016; For concise
reviews on carbene ligands, see: e) M. N. Hopkinson, C. Richter, M.
[36] A. H. Dardir, P. R. Melvin, R. M. Davis, N. Hazari, M. Mohadjer Beromi, J.
Org. Chem. 2018, 83, 469-477.
[37]For a review on the reactivity of B‒B bonds with transition metals, see: G.
J. Irvine, M. J. G. Lesley, T. B. Marder, N.C. Norman, C. R. Rice, E. G.
Robins, W. R. Roper, G. R. Whittell, L. J. Wright, Chem. Rev. 1998, 98,
2685-2722.
[38] For the synthesis of RhI boryl complexes, which N‒H activate aniline, see:
a) M. Teltewskoi, J. A. Panetier, S. A. Macgregor, T. A. Braun, Angew.
Chem. Int. Ed. 2010, 49, 3947-3951; Angew. Chem. 2010, 122, 4039-
4043; b) M. Teltewskoi, S. I. Kalläne, T. Braun, R. Herrmann, Eur. J.
Inorg. Chem. 2013, 5762-5768.
Schedler, F. Glorius, Nature 2014, 510, 485-496;
Organometallics, 2018, 37, 275-289.
f) D. Munz,
[15] For the first report of a CAAC, see: a) V. Lavallo, Y. Canac, C. Präsang,
B. Donnadieu, G. Bertrand, Angew. Chem. Int. Ed. 2005, 44, 5705-5709;
Angew. Chem. 2005, 117, 5851-5855; For a leading review on CAACs,
see: b) M. Melaimi, R. Jazzar, M. Soleilhavoup, G. Bertrand, Angew.
Chem. Int. Ed. 2017, 56, 10046-10068; Angew. Chem. 2017, 129,
10180-10203; For the synthesis of donor substituted CAACs, see: c) J.
Chu, D. Munz, R. Jazzar, M. Melaimi, G. Bertrand, J. Am. Chem. Soc.
2016, 138, 7884-7887; d) D. Munz, J. Chu, M. Melaimi, G. Bertrand,
Angew. Chem. Int. Ed. 2016, 55, 12886-12890; Angew. Chem. 2016, 128,
13078-13082.
[39] J. Darkwa, Polym. Rev. 2016, 57, 52-64.
[40] For the seminal report on Pd catalyzed hydroalkynylation, see: a) B. M.
Trost, C. Chan, G. Ruhter, J. Am. Chem. Soc. 1987, 109, 3486-3487; For
a review on transition metal-catalyzed coupling of alkynes to 1,3-enynes,
see: b) B. M. Trost, J. T. Masters, Chem. Soc. Rev. 2016, 45, 2212-2238;
For the dimerization of alkynes catalyzed by Pd(NHC) complexes, see: c)
C. Yang, S. P. Nolan, J. Org. Chem. 2002, 67, 591-593; d) C. Jahier, O. V.
Zatolochnaya, N. V. Zvyagintsev, V. P. Ananikov, V. Gevorgyan, Org. Lett.
2012, 14, 2846-2849.
[16] A. Grünwald, N. Orth, A. Scheurer, F. W. Heinemann, A. Pöthig, D. Munz,
Angew. Chem. Int. Ed. 2018, 57, 16228-16232; Angew. Chem. 2018, 130,
16463-16467.
7
This article is protected by copyright. All rights reserved.