The Journal of Physical Chemistry B
ARTICLE
(depending on the anion size) and solvent to solvent and also
depend on the nature as well as the structural arrangement of IL
and solvent. The results in Figure 6 show that the negative Δks
values increase with increasing temperature. Figure 7b depicts
that at the lower temperature 25 °C the Δks values for the TMAA
with DMF exhibit an inversion in the sign from negative to
positive deviation, indicating that the interaction between TMAA
and DMF decreases as the concentration of IL increases at this
temperature. The negative Δks values for TMAS + DMF at 25 °C
are higher than those for TMAA or TMAP with DMF mixtures
(Figure 7b). The observed strong attractive interactions between
IL + DMF are in quite good agreement with the theoretical
calculation of hydrogen-bonding interaction of IL + DMF
molecules (Figures 8ꢀ10).
’ ACKNOWLEDGMENT
We are gratefully acknowledged the Council of Scientific
Industrial Research (CSIR), New Delhi, through Grant No.
01(2343)/09/EMR-II, Department of Science and Technology
(DST), New Delhi, India (Grant No. SR/SI/PC-54/2008) and
University Grants Commission (UGC), New Delhi for financial
support.
’ REFERENCES
(1) Baj, S.; Chrobok, A.; Derfla, S. Green Chem. 2006, 8, 292–295.
(2) Seddon, K. R. J. Chem. Technol. Biotechnol. 1997, 68, 351–356.
(3) Wasserscheid, P.; Keim, W. Angew. Chem., Int. Ed. 2000, 39,
3772–3789.
(4) Van, R. F.; Sheldon, R. A. Chem. Rev. 2007, 107, 2757–2785.
(5) Cooper, E. R.; Andrews, C. D.; Wheatley, P. S.; Webb, P. B.;
Wormald, P.; Morris, R. E. Nature 2004, 430, 1012–1016.
(6) Yoshizawa, M.; Narita, A.; Ohno, H. Aust. J. Chem. 2004, 57,
139–144.
(7) Branco, L. C.; Crespo, J. G.; Afonso, C. A. M. Angew. Chem., Int.
Ed. 2002, 41, 2771–2773.
(8) Dietz, M. L. Sep. Sci. Technol. 2006, 41, 2047–2063.
(9) Attri, P.; Venkatesu, P.; Kumar, A. Phys. Chem. Chem. Phys. 2011,
13, 2788–2796.
’ CONCLUSION
To gain some insight into the new generation of green
solvents, we synthesized the novel trimethylammonium ILs,
namely, TMAA, TMAP, and TMAS, and studied the influence
of the IL, particularly an anion, on the polar solvent. In this paper,
densities and ultrasonic sound velocities for three new ILs with
DMF have been reported at 25ꢀ50 °C under atmospheric
pressure. The performed work intends to map the temperature
effect on the molecular interaction behavior of an ammonium IL
with the DMF molecule. From these measurements, we pre-
dicted VE and Δks at each temperature as a function of IL
concentration. The VE values for ILs + DMF are negative at all
ranges of composition, except TMAP or TMAS with DMF at
25 °C. The negative excess molar volumes reveal that a more
efficient packing or attractive interaction occurred when the IL and
DMF were mixed. The decrease in the magnitude of the negative VE
values with an increase in IL composition can be attributed to the
decrease of hydrogen bonding. The variation in the excess proper-
ties depends upon the hydrogen bonding between ILs and DMF.
These observed interactions are supported by our theoretical
calculations, which are obtained by Hyperchem 7.
The Δks values for all of the systems are negative over the
whole composition range at all studied temperatures, except
TMAA + DMF systems. The negative Δks values of ILs in DMF
are also attributed to the strong attractive interactions due to the
solvation of the ions in these solvents. The values of VE and Δks
were correlated by RedlichꢀKister equations. The values of VE
and Δks values increase with increasing temperature. For the first
time we show the utility of trimethylammonium ILs and motivate
other researchers to explore the different aspects and applications
of these novel ILs. These ILs have some additional character
compared to the conventional organic solvents in that they are
reusable at least five times without loss in their purity.
(10) Attri, P.; Venkatesu, P. Phys. Chem. Chem. Phys. 2011, 13,
6566–6575.
(11) Seddon, K. R. Nat. Mater. 2003, 2, 363–365.
(12) Plechkova, N. V.;Seddon, K. R. Chem. Soc. Rev. 2008, 37, 123–150.
(13) Earle, M. J.; Esperanca, J.; Gilea, M. A.; Lopes, J. N. C.; Rebelo,
L. P. N.; Magee, J. W.; Seddon, K. R.; Widegren, J. A. Nature 2006,
439, 831–834.
(14) Welton, T. Chem. Rev. 1999, 99, 2071–2083.
(15) Attri, P.; Reddy, P. M.; Venkatesu, P. Indian J. Chem. A 2010,
49A, 736–742.
(16) Attri, P.; Reddy, P. M.; Venkatesu, P.; Kumar, A.; Hofman, T.
J. Phys. Chem. B 2010, 114, 6126–6133.
(17) Attri, P.; Venkatesu, P.; Kumar, A. J. Phys. Chem. B 2010,
114, 13415–13425.
(18) Scammells, P. J.; Scott, J. L.; Singer, R. D. Aust. J. Chem. 2005,
58, 155–169.
(19) Seddon, K. R.; Stark, A.; Torres, M. Pure Appl. Chem. 2000,
72, 2275–2287.
(20) Blesic, M.; Lopes, J. N. C.; Gomes, M. F. C.; Rebelo, L. P. N.
Phys. Chem. Chem. Phys. 2010, 12, 9685–9692.
(21) D'Anna, F.; Marullo, S.; Noto, R. J. Org. Chem. 2010, 75,
767–771.
(22) Govinda, V.; Attri, P.; Venkatesu, P.; Venkateswarlu, P. Fluid
Phase Equilib. 2011, 304, 35–43.
(23) Mokhtarani, B.; Sharifi, A.; Mortaheb, H. R.; Mirzaei, M.; Mafi,
M.; Sadeghian, F. J. Chem. Thermodyn. 2009, 41, 323–329.
(24) Wagner, M.; Stanga, O.; Schr€oer, W. Phys. Chem. Chem. Phys.
2003, 5, 3943–3950.
(25) Ortega, J.; Vreekamp, R.; Marrero, E.; Penco, E. J. Chem. Eng.
Data 2007, 52, 2269–2276.
’ ASSOCIATED CONTENT
(26) Fr€oba, A. P.; Kremer, H.; Leipertz, A. J. Phys. Chem. B 2010,
112, 12420–12430.
(27) Wang, J.; Tian, Y.; Zhuo, K. Green Chem. 2003, 5, 618–622.
(28) Geppert-Rybczyꢀnska, M.; Heintz, A.; Lehmann, J. K.; Golus, A.
J. Chem. Eng. Data 2010, 55, 4114–4120.
S
Supporting Information. Mole fraction, density, ultra-
b
sonic velocity, isentropic compressibility, and deviation in isen-
tropic compressibility values for the systems of ILs with DMF at
various temperatures and atmospheric pressure. This material is
(29) Wang, J.; Wang, H.; Zhang, S.; Zhang, H.; Zhao, Y. J. Phys.
Chem. B 2007, 111, 6181–6188.
(30) Firestone, A.; Dzielawa, J. A.; Zapol, P.; Curtiss, L. A.; Seifert, S.;
Dietz, M. L. Langmuir 2002, 18, 7258–7260.
(31) Law, G.; Watson, P. R. Langmuir 2001, 17, 6138–6141.
(32) Zhang, Z.; Wu, W.; Gao, H.; Han, B.; Wang, B.; Huang, Y. Phys.
Chem. Chem. Phys. 2004, 6, 5051–5055.
’ AUTHOR INFORMATION
Corresponding Author
*E-mail: venkatesup@hotmail.com; pvenkatesu@chemistry.du.
ac.in. Tel.: +91-11-27666646-142. Fax: +91-11-2766 6605.
10096
dx.doi.org/10.1021/jp2059084 |J. Phys. Chem. B 2011, 115, 10086–10097