4
G. GAO ET AL.
(B2015205182) and the National Natural Science Foundation of
China (21272053).
Diketones: A Facile Synthesis of 4(3H)-Quinazolinones in
Aqueous Ethyl Lactate. RSC Adv. 2015, 5, 85646–85651. DOI:
[15] Cao, S.; Zhong, S.; Xin, L.; Wan, J.-P.; Wen, C. Visible-Light-
Induced C = C Bond Cleavage of Enaminones for the Synthesis
of 1,2-Diketones and Quinoxalines in Sustainable Medium.
ChemCatChem 2015, 7, 1478–1482. DOI: 10.1002/
ORCID
Zhan-Hui Zhang
[16] Gao, Y.; Liu, Y. Y.; Wei, L.; Wan, J. P. Synthesis of Enaminones
Containing
Diverse
N,N-Disubstitution
via
Simple
Transamination:
Operation. Res. Chem. Intermed. 2017, 43, 5547–5555. DOI:
A
Study with Sustainable Catalyst-Free
References
[1] Aparicio, S.; Alcalde, R. The Green Solvent Ethyl Lactate: An
Experimental and Theoretical Characterization. Green Chem.
[2] Villanueva-Bermejo, D.; Reglero, G.; Fornari, T. Recent
Advances in the Processing of Green Tea Biomolecules Using
Ethyl Lactate. A Review. Trends Food Sci. Technol. 2017, 62,
[3] Garcia, G.; Atilhan, M.; Aparicio, S. Insights into Alkyl Lactate
plus Water Mixed Fluids. J. Mol. Liq. 2014, 199, 215–223. DOI:
[4] Manic, M. S.; Villanueva, D.; Fornari, T.; Queimada, A. J.;
Macedo, E. A.; Najdanovic-Visak, V. Solubility of High-Value
Compounds in Ethyl Lactate: Measurements and Modelling. J.
Chem. Thermodyn. 2012, 48, 93–100. DOI: 10.1016/
[5] Bermejo, D. V.; Ibanez, E.; Reglero, G.; Fornari, T. Effect of
Cosolvents (ethyl Lactate, Ethyl Acetate and Ethanol) on the
Supercritical CO2 Extraction of Caffeine from Green Tea. J.
Supercrit. Fluids 2016, 107, 507–512. DOI: 10.1016/
[6] Kamalanathan, I.; Canal, L.; Hegarty, J.; Najdanovic-Visak, V.
Partitioning of Amino Acids in the Novel Biphasic Systems
Based on Environmentally Friendly Ethyl Lactate. Fluid Phase
[7] Lores, M.; Pajaro, M.; Alvarez-Casas, M.; Dominguez, J.;
Garcia-Jares, C. Use of Ethyl Lactate to Extract Bioactive
Compounds from Cytisus scoparius: Comparison of Pressurized
Liquid Extraction and Medium Scale Ambient Temperature
Systems. Talanta 2015, 140, 134–142. DOI: 10.1016/
[8] Strati, I. F.; Oreopoulou, V. Process Optimisation for Recovery
of Carotenoids from Tomato Waste. Food Chem. 2011, 129,
[9] Wei, L.; Chen, X.; Liu, Y.; Wan, J. Recent Advances in Organic
Synthesis Employing Ethyl Lactate as Green Reaction Medium.
Chin. J. Org. Chem. 2016, 36, 954–961. DOI: 10.6023/
[10] Wan, J. P.; Cao, S.; Hu, C. F.; Wen, C. P. Iodine-Catalyzed,
Ethyl-Lactate-Mediated Synthesis of 1,4-Benzothiazines via
Metal-Free Cascade Enaminone Transamination and C-H
Sulfenylation. Asian J. Org. Chem. 2018, 7, 328–331. DOI:
[11] Zhang, M.; Fu, Q. Y.; Gao, G.; He, H. Y.; Zhang, Y.; Wu, Y. S.;
Zhang, Z. H. Catalyst-Free, Visible-Light Promoted One-Pot
Synthesis of Spirooxindole-Pyran Derivatives in Aqueous Ethyl
Lactate. ACS Sustainable Chem. Eng. 2017, 5, 6175–6182. DOI:
[12] Wan, J.-P.; Zhong, S.; Xie, L.; Cao, X.; Liu, Y.; Wei, L. KIO3-
Catalyzed Aerobic Cross-Coupling Reactions of Enaminones
and Thiophenols: Synthesis of Polyfunctionalized Alkenes by
Metal-Free C-H Sulfenylation. Org. Lett. 2016, 18, 584–587.
[17] Bhat, P.; Shridhar, G.; Ladage, S.; Ravishankar, L. An Eco-
Friendly Synthesis of 2-Pyrazoline Derivatives Catalysed by
CeCl3Á7H2O. J. Chem. Sci. 2017, 129, 1441–1448. DOI: 10.1007/
[18] Gawande, M. B.; Bonifacio, V. D. B.; Luque, R.; Branco, P. S.;
Varma, R. S. Benign by Design: catalyst-Free in-Water, on-
Water Green Chemical Methodologies in Organic Synthesis.
[19] Gu, Y. L.; Jerome, F. Glycerol as a Sustainable Solvent for
Green Chemistry. Green Chem. 2010, 12, 1127–1138. DOI:
[20] Liu, J.; Wang, L.; Wang, X. X.; Xu, L. B.; Hao, Z. H.; Xiao, J.
Fluorinated Alcohol-Mediated [4 + 3] Cycloaddition Reaction of
Indolyl Alcohols with Cyclopentadiene. Org. Biomol. Chem.
[21] Deb, M. L.; Pegu, C. D.; Borpatra, P. J.; Saikia, P. J.; Baruah,
P. K. Catalyst-Free Multi-Component Cascade C-H-
Functionalization in Water Using Molecular Oxygen: An
Approach to 1,3-Oxazines. Green Chem. 2017, 19, 4036–4042.
[22] Liu, P.; Hao, J. W.; Mo, L. P.; Zhang, Z. H. Recent Advances in
the Application of Deep Eutectic Solvents as Sustainable Media
as Well as Catalysts in Organic Reactions. RSC Adv. 2015, 5,
[23] Zhang, M.; Liu, Y. H.; Shang, Z. R.; Hu, H. C.; Zhang, Z. H.
Supported Molybdenum on Graphene Oxide/Fe3O4: An
Efficient, Magnetically Separable Catalyst for One-Pot
Construction of Spiro-Oxindole Dihydropyridines in Deep
Eutectic Solvent under Microwave Irradiation. Catal. Commun.
[24] Gao, G.; Wang, P.; Liu, P.; Zhang, W. H.; Mo, L. P.; Zhang,
Z. H. Deep Eutectic Solvent Catalyzed One-Pot Synthesis of
4,7-Dihydro-1H-Pyrazolo[3,4-b]Pyridine-5-Carbonitriles. Chin.
[25] Chen, M.-N.; Mo, L.-P.; Cui, Z.-S.; Zhang, Z.-H. Magnetic
Nanocatalysts: Synthesis and Application in Multicomponent
Reactions. Curr. Opin. Green. Sustain. Chem 2019, 15, 27–37.
[26] Sampath, C.; Harika, P.; Revaprasadu, N. Design, Green
Synthesis, anti-Microbial, and anti-Oxidant Activities of Novel
Alpha-Aminophosphonates via Kabachnik-Fields Reaction.
Phosphorus, Sulfur Silicon Relat. Elem. 2016, 191, 1081–1085.
[27] Mohammadiyan, E.; Ghafuri, H.; Kakanejadifard, A. A. New
Procedure for Synthesis of α-Aminophosphonates by Aqueous
Formic Acid as an Effective and Environment-Friendly
Organocatalyst. J. Chem. Sci. 2017, 129, 1883–1891. DOI:
[28] Oliveira, A. R.; Katla, R.; Rocha, M. P. D.; Albuquerque, T. B.;
da Silva, C. D. G.; Kupfer, V. L.; Rinaldi, A. W.; Domingues,
N. L. C. Zinc di(L-Prolinate)-Mediated Synthesis of α-
Aminophosphonates under Mild Conditions. Synthesis 2016,
[13] Gao, G.; Han, Y.; Zhang, Z. H. Catalyst Free Synthesis of
Bis(indolyl)Methanes and 3,3-Bis(indolyl)Oxindoles in Aqueous
Ethyl Lactate. Chemistryselect 2017, 2, 11561–11564. DOI: [29] Hou, J. T.; Gao, J. W.; Zhang, Z. H. NbCl5: An Efficient
[14] Shen, G.; Zhou, H.; Du, P.; Liu, S.; Zou, K.; Uozumi, Y.
Bronsted Acid-Catalyzed Selective C-C Bond Cleavage of 1,3-
Catalyst for One-Pot Synthesis of α-Aminophosphonates under
Solvent-Free Conditions. Appl. Organometal. Chem. 2011, 25,