10.1002/chem.201900737
Chemistry - A European Journal
FULL PAPER
directly by silica gel column chromatography (hexane/Et3N, 98:2) to
obtain the desired product.
[8]
[9]
a) K. Azizi, R. Madsen, ChemCatChem 2018, 10, 3703‒3708; b) P.
Hermange, A. T. Lindhardt, R. H. Taaning, K. Bjerglund, D. Lupp, T.
Skrydstrup, J. Am. Chem. Soc. 2011, 133, 6061‒6071.
General procedure for quinoline synthesis: Complex A (35 mg, 0.05
mmol), 2-aminobenzyl alcohol (1 mmol), KOH (2 mmol), KOtBu (2 mmol)
and pre-activated 4Å molecular sieves (150 mg) were placed in an oven-
dried tube (20 mL). The tube was placed in a Radley carousel on a
hotplate, subjected to vacuum and then filled with N2 (repeated 3 times).
Freshly degassed mesitylene (4 mL) was injected into the mixture
followed by heating to 164 °C under a N2 atmosphere. Then, the
secondary alcohol (1.5 mmol), pyridine (0.2 mmol) and tetradecane (0.5
mmol, internal standard) were added to the green solution and the
reaction was refluxed for 60 h. The mixture was concentrated and the
residue purified by silica gel column chromatography (CH2Cl2/hexane,
1:1) to obtain the desired product.
a) R. Figliolia, S. Baldino, H. G. Nedden, A. Zanotti-Gerosa, W. Baratta,
Chem. Eur. J. 2017, 23, 14416–14419; b) A. J. A. Watson, A. C.
Maxwell, J. M. J. Williams, J. Org. Chem. 2011, 76, 2328–2331; c) A.
Tillack, D. Hollmann, K. Mevius, D. Michalik, S. Bähn, M. Beller, Eur. J.
Org. Chem. 2008, 4745–4750; d) S. Ganguly, D. M. Roundhill,
Polyhedron 1990, 9, 2517–2526.
[10] a) Q. Zou, C. Wang, J. Smith, D. Xue, J. Xiao, Chem. Eur. J. 2015, 21,
9656–9661; b) L. L. R. Lorentz-Petersen, L. U. Nordstrøm, R. Madsen,
Eur. J. Org. Chem. 2012, 6752–6759; c) N. Andrushko, V. Andrushko,
P. Roose, K. Moonen, A. Börner, ChemCatChem 2010, 2, 640–643; d)
K.-i. Fujita, Y. Enoki, R. Yamaguchi, Tetrahedron 2008, 64, 1943–1954.
[11] a) R. Mamidala, V. Mukundam, K. Dhanunjayarao, K. Venkatasubbaiah,
Tetrahedron 2017, 73, 2225–2233; b) T. T. Dang, B. Ramalingam, S. P.
Shan, A. M. Seayad, ACS Catal. 2013, 3, 2536–2540.
[12] a) T. J. Brown, M. Cumbes, L. J. Diorazio, G. J. Clarkson, M. Wills, J.
Org. Chem. 2017, 82, 10489–10503; b) T. Yan, B. L. Feringa, K. Barta,
ACS Catal. 2016, 6, 381–388.
Acknowledgements
We thank the Torkil Holm Foundation for financial support.
[13] M. Mastalir, E. Pittenauer, G. Allmaier, K. Kirchner, J. Am. Chem. Soc.
2017, 139, 8812–8815.
Keywords: alcohols • dehydrogenation • homogeneous
catalysis • manganese • synthetic methods
[14] J. Marco-Contelles, E. Pérez-Mayoral, A. Samadi, M. do Carmo
Carreiras, E. Soriano, Chem. Rev. 2009, 109, 2652–2671.
[15] a) B. Pan, B. Liu, E. Yue, Q. Liu, X. Yang, Z. Wang, W.-H. Sun, ACS
Catal. 2016, 6, 1247–1253; b) S. Ruch, T. Irrgang, R. Kempe, Chem.
Eur. J. 2014, 20, 13279–13285; c) D. Srimani, Y. Ben-David, D. Milstein,
Chem. Commun. 2013, 49, 6632–6634.
[1]
[2]
a) A. Corma, J. Navas, M. J. Sabater, Chem. Rev. 2018, 118, 1410–
1459; b) C. Gunanathan, D. Milstein, Science 2013, 341, 1229712; c) S.
Bähn, S. Imm, L. Neubert, M. Zhang, H. Neumann, M. Beller,
ChemCatChem 2011, 3, 1853–1864; d) Y. Obora, Y. Ishii, Synlett 2011,
30–51; e) G. E. Dobereiner, R. H. Crabtree, Chem. Rev. 2010, 110,
681–703.
[16] a) K. Das, A. Mondal, D. Srimani, Chem. Commun. 2018, 54, 10582–
10585; b) S. Shee, K. Ganguli, K. Jana, S. Kundu, Chem. Commun.
2018, 54, 6883–6886; c) S. Das, D. Maiti, S. De Sarkar, J. Org. Chem.
2018, 83, 2309–2316; d) D.-W. Tan, H.-X. Li, D.-L. Zhu, H.-Y. Li, D. J.
Young, J.-L. Yao, J.-P. Lang, Org. Lett. 2018, 20, 608–611; e) S. Parua,
R. Sikari, S. Sinha, S. Das, G. Chakraborty, N. D. Paul, Org. Biomol.
Chem. 2018, 16, 274–284; f) S. P. Midya, V. G. Landge, M. K. Sahoo, J.
Rana, E. Balaraman, Chem. Commun. 2018, 54, 90–93; g) M. Mastalir,
M. Glatz, E. Pittenauer, G. Allmaier, K. Kirchner, J. Am. Chem. Soc.
2016, 138, 15543–15546.
a) G. A. Filonenko, R. van Putten, E. J. M. Hensen, E. A. Pidko, Chem.
Soc. Rev. 2018, 47, 1459–1483; b) F. Kallmeier, R. Kempe, Angew.
Chem. Int. Ed. 2018, 57, 46–60; Angew. Chem. 2018, 130, 48–63; c) B.
Maji, M. K. Barman, Synthesis 2017, 49, 3377–3393; d) M. Garbe, K.
Junge, M. Beller, Eur. J. Org. Chem. 2017, 4344–4362; e) E.
Balaraman, A. Nandakumar, G. Jaiswal, M. K. Sahoo, Catal. Sci.
Technol. 2017, 7, 3177–3195.
[17] M. Taniguchi, J. S. Lindsey, Chem. Rev. 2017, 117, 344–535.
[18] a) S. Hiroto, Y. Miyake, H. Shinokubo, Chem. Rev. 2017, 117, 2910–
3043; b) M. O. Senge, Acc. Chem. Res. 2005, 38, 733–743.
[3]
[4]
A. Mukherjee, A. Nerush, G. Leitus, L. J. W. Shimon, Y. Ben David, N.
A. E. Jalapa, D. Milstein, J. Am. Chem. Soc. 2016, 138, 4298–4301.
For recent examples, see: a) U. K. Das, S. Chakraborty, Y. Diskin-
Posner, D. Milstein, Angew. Chem. Int. Ed. 2018, 57, 13444–13448;
Angew. Chem. 2018, 130, 13632–13636; b) T. Liu, L. Wang, K. Wu, Z.
Yu, ACS Catal. 2018, 8, 7201–7207; c) G. Zhang, T. Irrgang, T. Dietel,
F. Kallmeier, R. Kempe, Angew. Chem. Int. Ed. 2018, 57, 9131–9135;
Angew. Chem. 2018, 130, 9269–9273; d) M. K. Barman, S. Waiba, B.
Maji, Angew. Chem. Int. Ed. 2018, 57, 9126–9130; Angew. Chem. 2018,
130, 9264–9268.
[19] A. Modvig, T. L. Andersen, R. H. Taaning, A. T. Lindhardt, T.
Skrydstrup, J. Org. Chem. 2014, 79, 5861–5868.
[20] For X-ray structures of two alkoxide complexes of iron(III) porphyrins,
see: a) L. Cheng, N. Xu, D. R. Powell, G. B. Richter-Addo, Acta Cryst.
2010, E66, m1448; b) K. Hatano, T. Uno, Bull. Chem. Soc. Jpn. 1990,
63, 1825–1827.
[21] An iron(III) porphyrin complex has been shown to catalyze the transfer
hydrogenation of 2-methoxyacetophenone in isopropanol, but the
mechanism has not been investigated, see: S. Enthaler, B. Spilker, G.
Erre, K. Junge, M. K. Tse, M. Beller, Tetrahedron 2008, 64, 3867–3876.
[22] L. Liu, M. Yu, B. B. Wayland, X. Fu, Chem. Commun. 2010, 46, 6353–
6355.
[5]
For recent examples, see: a) A. Kaithal, M. Hölscher, W. Leitner,
Angew. Chem. Int. Ed. 2018, 57, 13449–13453; Angew. Chem. 2018,
130, 13637–13641; b) Y.-Q. Zou, S. Chakraborty, A. Nerush, D. Oren,
Y. Diskin-Posner, Y. Ben-David, D. Milstein, ACS Catal. 2018, 8, 8014–
8019; c) M. Glatz, B. Stöger, D. Himmelbauer, L. F. Veiros, K. Kirchner,
ACS Catal. 2018, 8, 4009–4016; d) D. Wei, A. Bruneau-Voisine, T.
Chauvin, V. Dorcet, T. Roisnel, D. A. Valyaev, N. Lugan, J.-B. Sortais,
Adv. Synth. Catal. 2018, 360, 676–681.
[23] For a discussion of possible mechanistic paths for this transformation,
see: J. P. Collman, R. Boulatov, Inorg. Chem. 2001, 40, 560–563.
[24] X. Li, S. Shinoda, Y. Saito, J. Mol. Catal. 1989, 49, 113–119.
[25] A dissociative -hydride abstraction mechanism has been proposed to
explain formal -hydride eliminations in alkoxide complexes where
open cis coordination sites or detachable ligands are not available, see:
a) N. A. Smythe, K. A. Grice, B. S. Williams, K. I. Goldberg,
Organometallics 2009, 28, 277–288; b) C. M. Fafard, O. V. Ozerov,
Inorg. Chim. Acta 2007, 360, 286–292; c) O. Blum, D. Milstein, J.
Organomet. Chem. 2000, 593–594, 479–484.
[6]
[7]
S. V. Samuelsen, C. Santilli, M. S. G. Ahlquist, R. Madsen, Chem. Sci.
2019, 10, 1150–1157.
a) M. J. F. Calvete, M. Piñeiro, L. D. Dias, M. M. Pereira,
ChemCatChem 2018, 10, 3615–3635; b) W. Liu, J. T. Groves, Acc.
Chem. Res. 2015, 48, 1727–1735; c) M. Costas, Coord. Chem. Rev.
2011, 255, 2912–2932; d) C.-M. Che, V. K.-Y. Lo, C.-Y. Zhou, J.-S.
Huang, Chem. Soc. Rev. 2011, 40, 1950–1975; e) H. Lu, X. P. Zhang,
Chem. Soc. Rev. 2011, 40, 1899–1909.
This article is protected by copyright. All rights reserved.