and as organic catalysts.8 Furthermore, fascinating reports
regarding the use of NHCs as nucleophilic catalysts9 for
polymerization of lactones and transesterification reactions
have appeared.10
Table 1. Catalytic Amidation of Esters with Amino Alcohols
As part of a program directed at the discovery of new and
efficient methods for target-oriented synthesis, we sought
the development of a single-step and catalytic amidation of
unactivated esters. In preliminary studies focused on carbene-
catalyzed amidation of esters, we discovered that amino
alcohols were particularly reactive. A combination of superb
reactivity, ready availability, and ease of storage of N,N-
bismesitylimidazolylidene5b (3, IMes) led to its selection as
the catalyst for our amidation studies. Under optimal
conditions (tetrahydrofuran, 1.0 M initial concentration of
substrates, 23 °C), treatment of an equimolar amount of an
amino alcohol and an unactivated ester with IMes (3, 5 mol
%) affords the corresponding amide in high yield (Table 1).
Under standard conditions, the coupling of methyl phenyl-
acetate (1a) and ethanolamine (2a) was complete in 8 h,
while the corresponding reaction with methyl benzoate (1b)
gave the desired amide in 75% yield after 24 h (Table 1,
entries 1 and 2, respectively).11
Both aromatic and aliphatic esters with a wide range of
functional groups may be employed in this amidation
reaction. The amidation reaction is sensitive to both electronic
and steric factors (Table 1, entries 2-7 and 8-11, respec-
(5) For the first successful isolation of an NHC, see: (a) Arduengo, A.
J., III; Harlow, R. L.; Kline, M. J. Am. Chem. Soc. 1991, 113, 361-363.
(b) Arduengo, A. J., III; Dias, H. V. R.; Harlow, R. L.; Kline, M. J. Am.
Chem. Soc. 1992, 114, 5530-5534. For early studies, see: (c) Wanzlick,
H.-W.; Schikora, E. Angew. Chem. 1960, 72, 494. (d) Wanzlick, H.-W.;
Kleiner, H.-J. Angew. Chem. 1961, 73, 493.
(6) (a) Bourissou, D.; Guerret, O.; Gabbai, F. P.; Bertrand, G. Chem.
ReV. 2000, 100, 39-92. (b) Carbene Chemistry. From Fleeting Intermedi-
ates to Powerful Reagents; Bertrand, G., Ed.; Marcel Dekker: New York,
2002.
(7) (a) Trnka, T. M.; Grubbs, R. H. Acc. Chem. Res. 2001, 34, 18-29.
(b) Herrmann, W. A. Angew. Chem., Int. Ed. 2002, 41, 1290-1309. (c)
Yong, B. S.; Nolan, S. P. Chemtracts: Org. Chem. 2003, 16, 205-227.
(d) Burgess, K.; Perry, M. C. Tetrahedron: Asymmetry 2003, 14, 951-
961. (e) Kremzow, D.; Seidel, G.; Lehmann, C.; Fu¨rstner, A. Chem. Eur.
J. 2005, 11, 1833-1853.
(8) (a) Breslow, R. J. Am. Chem. Soc. 1958, 80, 3719-3726. (b) Stetter,
H.; Kuhlmann, H. Synthesis 1975, 379-380. (c) Murry, J. A.; Frantz, D.
E.; Soheili, A.; Tillyer, R.; Grabowski, E. J. J.; Reider, P. J. J. Am. Chem.
Soc. 2001, 123, 9696-9697. (d) Burstein, C.; Glorius, F. Angew. Chem.,
Int. Ed. 2004, 43, 6205-6208. (e) Sohn, S. S.; Rosen, E. L.; Bode, J. W.
J. Am. Chem. Soc. 2004, 126, 14370-14371. For reviews, see: (f) List, B.
Tetrahedron 2002, 58, 5573-5590. For reviews, see: (g) Dalko, P. I.;
Moisan, L. Angew. Chem., Int. Ed. 2004, 43, 5138-5175. (h) Enders, D.;
Balensiefer, T. Acc. Chem. Res. 2004, 37, 534-541.
(9) (a) Steglich, W.; Ho¨fle, G. Angew. Chem., Int. Ed. Engl. 1969, 8,
981-983. (b) Vedejs, E.; Diver, S. T. J. Am. Chem. Soc. 1993, 115, 3358-
3359. (c) Ruble, J. C.; Fu, G. C. J. Org. Chem. 1996, 61, 7230-7231.
(10) (a) Connor, E. F.; Nyce, G. W.; Myers, M.; Mock, A.; Hedrick, J.
L. J. Am. Chem. Soc. 2002, 124, 914-915. (b) Grasa, G. A.; Kissling, R.
M.; Nolan, S. P. Org. Lett. 2002, 4, 3583-3586. (c) Nyce, G. W.; Lamboy,
J. A.; Connor, E. F.; Waymouth, R. M.; Hedrick, J. L. Org. Lett. 2002, 4,
3587-3590. (d) Grasa, G. A.; Gueveli, T.; Singh, R.; Nolan, S. P. J. Org.
Chem. 2003, 68, 2812-2819. (e) Nyce, G. W.; Glauser, T.; Connor, E. F.;
Moeck, A.; Waymouth, R. M.; Hedrick, J. L. J. Am. Chem. Soc. 2003,
125, 3046-3056. (f) Singh, R.; Kissling, R. M.; Letellier, M.-A.; Nolan,
S. P. J. Org. Chem. 2004, 69, 209-212. (g) For resolution of alcohols using
vinyl esters, see: Kano, T.; Sasaki, K.; Maruoka, K. Org. Lett. 2005, 7,
1347-1349.
a Reaction times 1.5-24 h; isolated yield after purification. b In situ
generation of IMes (6.5 mol % IMes‚HCl, 5.0 mol % tBuOK). c Anhydrous
LiCl (5 mol %) used as an additive. d >94% de, >98% ee.
tively).12 The presence of heterocycles is tolerated both on
the ester and the amino alcohol components (Table 1, entries
16-19 and 22-23, respectively). The IMes (3)-catalyzed
(11) (a) In the absence of 3, incubation of equimolar amounts of esters
1a and 1b with 2a at 23 °C provides less than 2 and 1%, respectively, of
the corresponding amides in 12 h. (b) The use of sodium methoxide and
potassium tbutoxide in place of IMes (3) in the coupling of 1a and 2a gave
60 and 74% yield of 4aa, respectively. See Supporting Information.
(12) Introduction of anhydrous lithium chloride (5 mol %) to the reaction
mixture increases the rate of this coupling (Table 1, entries 2, 7, and 13).
2454
Org. Lett., Vol. 7, No. 12, 2005