to interact with p systems resulting in a pronounced red-shift of the
n(HI) vibration from the 2227 cm21 gas-phase value.21
matrix isolation equipment in Bochum, and Professor Halton for
helpful comments. This paper is dedicated to Professor P. v. R.
Shleyer on the occasion of his 75th birthday.
Annealing also changes the relative intensities of the group of
absorptions observed in the 1080–1100 cm21 range possibly arising
from disturbances due to HI molecules lying nearby. The second
most intense signal of 2b, a C–C stretching vibration involving the
three-membered ring, is computed at 1673 cm21, but only a broad
band (centered at 1632 cm21) can be observed. No reliable
integration is possible, because of overlap with the water monomer
Holger F. Bettinger*
Lehrstuhl fu¨r Organische Chemie 2, Universita¨tsstr. 150, 44780,
Bochum, Germany. E-mail: Holger.Bettinger@rub.de;
Fax: +49 234 321 4353; Tel: +49 234 322-4353
Notes and references
at 1624 cm21
.
Monochromatic 254-nm-irradiation of the matrix after 308-nm-
irradiation completely bleaches the newly formed signals within
several minutes and results in formation of 5. It is well known that
HI can be cleaved into the atoms by 254 nm irradiation.22 We
conclude that the observed photochemistry is due to the
equilibrium:
1 (a) B. Halton, Chem. Rev., 2003, 103, 1327; (b) A. T. Balaban,
D. C. Oniciu and A. R. Katritzky, Chem. Rev., 2004, 104, 2777.
2 (a) R. I. Kaiser and H. F. Bettinger, Angew. Chem., 2002, 114, 2456,
Angew. Chem., Int. Ed., 2002, 41, 2350; (b) H. F. Bettinger and
R. I. Kaiser, J. Phys. Chem. A, 2004, 108, 4576.
3 (a) C. The´taz and C. Wentrup, J. Am. Chem. Soc., 1976, 98, 1258; (b)
G. I. Yranzo, J. E. Elguero, R. Flammang and C. Wentrup, Eur. J. Org.
Chem., 2001, 2209.
4 (a) K. Hatano, N. Tokitoh, N. Takagi and S. Nagase, J. Am. Chem.
Soc., 2000, 122, 4829; (b) T. Tajima, K. Hatano, T. Sasaki, T. Sasamori,
N. Takeda, N. Tokitoh, N. Takagi and S. Nagase, J. Organomet.
Chem., 2003, 686, 118.
5 N. Tokitoh, K. Hatano, T. Sasaki, T. Sasamori, N. Takeda and
N. Takagi, Organometallics, 2002, 21, 4309.
6 R. Schulz and A. Schweig, Tetrahedron Lett., 1984, 25, 2337.
7 (a) Z. B. Maksic, M. Eckert-Maksic and K.-H. Pfeifer, J. Mol. Struct.,
1993, 300, 445; (b) M. Eckert-Maksic, Z. Glasovac, Z. B. Maksic and
I. Zrinski, Theochem, 1996, 366, 173; (c) A. Stanger, J. Am. Chem. Soc.,
1998, 120, 12034.
Reversible photochemical reactions can also be observed by UV
spectroscopy. The UV/vis spectrum of 5 is characterized by three
major absorptions at 301, 274, 222 nm in good agreement with
computation (304, 287, and 219 nm at B3LYP/cc-pVTZ). These
absorptions decrease upon 308-nm-irradiation and subsequently
increase in intensity on short wavelength (l 5 254 nm) irradiation.
No new absorptions due to 2b can be detected. According to the
DFT computations, the strongest absorption of 2b (265 nm)
overlaps with the 274-nm-band of 5, but only has about half of its
oscillator strength.
8 B. Halton, A. D. Woolhouse, H. M. Hugel and D. P. Kelly, J. Chem.
Soc., Chem. Commun., 1974, 247.
9 (a) M. E. Volpin, Y. D. Koreshkov, V. G. Dulova and D. N. Kursanov,
Tetrahedron, 1962, 18, 107; (b) K. Krogh-Jespersen, D. Cremer,
J. D. Dill, J. A. Pople and P. v. R. Schleyer, J. Am. Chem. Soc.,
1981, 103, 2589; (c) P. H. M. Budzelaar, A. J. Kos, T. Clark and P. v.
R. Schleyer, Organometallics, 1985, 4, 429.
10 (a) J. J. Eisch and L. J. Gonsior, J. Organomet. Chem., 1967, 8, 53; (b)
J. J. Eisch and H. P. Becker, J. Organomet. Chem., 1979, 171, 141; (c)
R. Schlo¨gl and B. Wrackmeyer, Polyhedron, 1985, 4, 885.
11 J. J. Eisch, F. Shen and K. Tamao, Heterocycles, 1982, 18, 245.
12 S. M. van der Kerk, P. H. M. Budzelaar, A. van der Kerk, G. J. M. van
der Kerk and P. v. R. Schleyer, Angew. Chem., 1983, 95, 61, Angew.
Chem., Int. Ed. Engl., 1983, 22, 48.
The iodo substituent in 2b is found to destabilize the
benzoborirene ring system by 2.3 kcal mol21 [CCSD(T)/cc-
pVTZ-(PP) energies, see ESI{] compared to 2a according to
equation (1).9c Nonetheless, very similar geometries are obtained
˚
for 2a and 2b, with the largest deviations being less than 0.01 A.
13 B. Pachaly and R. West, Angew. Chem., 1984, 96, 444, Angew. Chem.,
Int. Ed. Engl., 1984, 23, 454.
14 C. Pues and A. Berndt, Angew. Chem., 1984, 96, 306, Angew. Chem., Int.
Ed. Engl., 1984, 23, 313.
2b + BH3 A 2a + BH2I (1)
Borirene 4a is highly strained, 69 kcal mol21, according to the
computational analysis of Budzelaar et al., but it enjoys a large
15 C. Habben and A. Meller, Chem. Ber., 1984, 117, 2531.
16 (a) J. J. Eisch, B. Shafii and A. L. Rheingold, J. Am. Chem. Soc., 1987,
109, 2526; (b) J. J. Eisch, B. Shafii, J. D. Odom and A. L. Rheingold,
J. Am. Chem. Soc., 1990, 112, 1847.
resonance energy of 48 kcal mol21 9c
.
Equation (2) measures
17 (a) D. V. Lanzisera, P. Hassanzadeh, Y. Hannachi and L. Andrews,
J. Am. Chem. Soc., 1997, 119, 12402; (b) L. Andrews, D. V. Lanzisera,
P. Hassanzadeh and Y. Hannachi, J. Phys. Chem. A, 1998, 102, 3259.
18 N. Balucani, O. Asvany, Y. T. Lee, R. I. Kaiser, N. Galland and
Y. Hannachi, J. Am. Chem. Soc., 2000, 122, 11234.
the strain that results from the fusion of 4a and benzene to be
14.3 kcal mol21
.
2a + H2CLCH2 A benzene + 4a
(2)
19 M. Schmidt, W. Siebert and F. Rittig, Chem. Ber., 1968, 101, 281.
20 F. C. Nahm, E. F. Rothergy and K. Niedenzu, J. Organomet. Chem.,
1972, 35, 9.
21 (a) A. J. Barnes, J. B. Davies, H. E. Hallam and J. D. R. Howells,
J. Chem. Soc., Faraday Trans. 2, 1973, 69, 246; (b) J. Weidlein, U. Mu¨ller
and K. Dehnicke, Schwingungsfrequenzen I, Georg Thieme Verlag,
Stuttgart, 1981.
22 M. Pettersson and J. Nieminen, Chem. Phys. Lett., 1998, 283, 1.
23 W. E. Billups, W. Y. Chow, K. H. Leavell, E. S. Lewis, J. L. Margrave,
R. L. Sass, J. J. Shieh, P. G. Werness and J. L. Wood, J. Am. Chem.
Soc., 1973, 95, 7878.
Similar values, 15 (experiment)23 and 16–18 (theory)24
kcal mol21, have been derived for the strain in 1 due to the
fusion of benzene and cyclopropane.
In summary, we could show that the benzoborirene system
forms upon 308-nm-irradiation of 5 in an argon matrix at 10 K.
The strain of 2a is similar to that of cyclopropabenzene 1, while the
iodo substituent causes some additional destabilization.
This work was supported by the Fonds der Chemischen
Industrie and DFG. I thank Professor Sander for access to the
24 Y. Apeloig and D. Arad, J. Am. Chem. Soc., 1986, 108, 3241.
This journal is ß The Royal Society of Chemistry 2005
Chem. Commun., 2005, 2756–2757 | 2757