Journal of the American Chemical Society
Article
composed of polyampholytes demonstrate high toughness and
viscoelasticity. Nat. Mater. 2013, 12, 932−937.
(16) Fox, J.; Wie, J.; Greenland, B. W.; Burattini, S.; Hayes, W.;
Colquhoun, H. M.; Mackay, M. E.; Rowan, S. J. High-strength,
healable, supramolecular polymer nanocomposites. J. Am. Chem. Soc.
2012, 134, 5362−5368.
Technology and Innovation, the Cabinet Office, Government
of Japan. We are grateful to Prof. Kohzo Ito, Prof. Koichi
Mayumi, and Dr. Chang Liu of The University of Tokyo for
help on dynamic mechanical analysis (DMA) and thermal
mechanical analysis (TMA), to Dr. Yasuhiro Ishida and Dr.
Koki Sano of RIKEN Center for Emergent Matter Science for
help on recording optical microscope videos, and to Dr.
Yasumasa Takenaka and Dr. Koichiro Tachibana of RIKEN
Center for Sustainable Resource Science for help on high-
temperature tensile tests. Initial surveys on the reactivity of
anisylpropylene with organo rare-earth complexes by Dr. Juzo
Oyamada and Dr. Xiaochao Shi are gratefully appreciated.
Wide-angle X-ray diffraction measurements were performed at
BL05XU in SPring-8 facility. We gratefully acknowledge the
assistance of Dr. Taiki Hoshino (RIKEN), Dr. So Fujinami
(RIKEN), and Dr. Tomotaka Nakatani (RIKEN) for the
WAXD measurements.
(17) Yang, Y.; Davydovich, D.; Hornat, C. C.; Liu, X.; Urban, M. W.
Leaf-inspired self-healing polymers. Chem 2018, 4, 1928−1936.
(18) Chen, C. L. Designing transition metal catalysts for olefin
polymerization and copolymerization: Beyond electronic and steric
tuning. Nat. Rev. Chem. 2018, 2, 6−14.
(19) Franssen, N. M. G.; Reek, J. N. H.; de Bruin, B. Synthesis of
functional ‘polyolefins’: state of the art and remaining challenges.
Chem. Soc. Rev. 2013, 42, 5809−5832.
(20) Boffa, L. S.; Novak, B. M. Copolymerization of polar monomers
with olefins using transition-metal complexes. Chem. Rev. 2000, 100,
1479−1493.
(21) Nakamura, A.; Ito, S.; Nozaki, K. Coordination-insertion
copolymerization of fundamental polar monomers. Chem. Rev. 2009,
109, 5215−5244.
́
̂
(22) Kermagoret, A.; Debuigne, A.; Jerome, C.; Detrembleur, C.
Precision design of ethylene- and polar-monomer based copolymers
by organometallic-mediated radical polymerization. Nat. Chem. 2014,
6, 179−187.
REFERENCES
■
(1) Yang, Y.; Urban, M. W. Self-healing polymeric materials. Chem.
Soc. Rev. 2013, 42, 7446−7467.
(2) Patrick, J. F.; Robb, M. J.; Sottos, N. R.; Moore, J. S.; White, S.
R. Polymers with autonomous life-cycle control. Nature 2016, 540,
363−370.
(23) Johnson, L. K.; Mecking, S.; Brookhart, M. Copolymerization
of ethylene and propylene with functionalized vinyl monomers by
palladium(II) catalysts. J. Am. Chem. Soc. 1996, 118, 267−268.
(24) Nakamura, A.; Anselment, T. M. J.; Claverie, J.; Goodall, B.;
Jordan, R. F.; Mecking, S.; Rieger, B.; Sen, A.; van Leeuwen, P. W. N.
M.; Nozaki, K. Ortho-phosphinobenzenesulfonate: A superb ligand for
palladium-catalysed coordination-insertion copolymerization of polar
vinyl monomers. Acc. Chem. Res. 2013, 46, 1438−1449.
(25) Ota, Y.; Ito, S.; Kuroda, J.; Okumura, Y.; Nozaki, K.
Quantification of the steric influence of alkylphosphine−sulfonate
ligands on polymerization, leading to high-molecular-weight copoly-
mers of ethylene and polar monomers. J. Am. Chem. Soc. 2014, 136,
11898−11901.
(26) Terao, H.; Ishii, S.; Mitani, M.; Tanaka, H.; Fujita, T. Ethylene/
polar monomer copolymerization behavior of bis(phenoxy−imine)Ti
complexes: Formation of polar monomer copolymers. J. Am. Chem.
Soc. 2008, 130, 17636−17637.
(27) Yang, X.-H.; Liu, C.-R.; Wang, C.; Sun, X.-L.; Guo, Y.-H.;
Wang, X.-K.; Wang, Z.; Xie, Z.; Tang, Y. [O−NSR]TiCl3-catalyzed
copolymerization of ethylene with functionalized olefins. Angew.
Chem., Int. Ed. 2009, 48, 8099−8102.
(28) Dai, S.; Chen, C. Direct synthesis of functionalized high-
molecular-weight polyethylene by copolymerization of ethylene with
polar monomers. Angew. Chem., Int. Ed. 2016, 55, 13281−13285.
(29) Long, B. K.; Eagan, J. M.; Mulzer, M.; Coates, G. W. Semi-
crystalline polar polyethylene: ester-functionalized linear polyolefins
enabled by a functional-group-tolerant, cationic nickel catalyst. Angew.
Chem., Int. Ed. 2016, 55, 7106−7110.
(30) Zhong, L.; Li, G.; Liang, G.; Gao, H.; Wu, Q. Enhancing
thermal stability and living fashion in α-diimine−nickel-catalysed
(co)polymerization of ethylene and polar monomer by increasing the
steric bulk of ligand backbone. Macromolecules 2017, 50, 2675−2682.
(31) Chen, Z.; Liu, W.; Daugulis, O.; Brookhart, M. Mechanistic
studies of Pd(II)-catalyzed copolymerization of ethylene and
vinylalkoxysilanes: evidence for a β-silyl elimination chain transfer
mechanism. J. Am. Chem. Soc. 2016, 138, 16120−16129.
(32) Dai, S.; Chen, C. Direct synthesis of functionalized high-
molecular-weight polyethylene by copolymerization of ethylene with
polar monomers. Angew. Chem., Int. Ed. 2016, 55, 13281−13285.
(33) Chen, M.; Chen, C. L. A Versatile ligand platform for
palladium- and nickel-catalyzed ethylene copolymerizations with polar
monomers. Angew. Chem., Int. Ed. 2018, 57, 3094−3098.
(34) Chen, J.; Gao, Y.; Wang, B.; Lohr, T. L.; Marks, T. J. Scandium-
catalyzed self-assisted polar co-monomer enchainment in ethylene
polymerization. Angew. Chem., Int. Ed. 2017, 56, 15964−15968.
(3) Yang, Y.; Ding, X.; Urban, M. W. Chemical and physical aspects
of self-healing materials. Prog. Polym. Sci. 2015, 49−50, 34−59.
(4) Ghosh, B.; Urban, M. W. Self-repairing oxetane-substituted
chitosan polyurethane networks. Science 2009, 323, 1458−1460.
(5) Chen, X.; Dam, M. A.; Ono, K.; Mal, A.; Shen, H.; Nutt, S. R.;
Sheran, K.; Wudl, F. A thermally re-mendable cross-linked polymeric
material. Science 2002, 295, 1698−1702.
(6) Kim, S.-M.; Jeon, H.; Shin, S.-H.; Park, S.-A.; Jegal, J.; Hwang, S.
Y.; Oh, D. X.; Park, J. Superior toughness and fast self-healing at room
temperature engineered by transparent elastomers. Adv. Mater. 2018,
30, 1705145.
(7) Amamoto, Y.; Kamada, J.; Otsuka, H.; Takahara, A.;
Matyjaszewski, K. Repeatable Photoinduced Self-Healing of Cova-
lently Cross-Linked Polymers through Reshuffling of Trithiocarbon-
ate Units. Angew. Chem., Int. Ed. 2011, 50, 1660−1663.
(8) Yanagisawa, Y.; Nan, Y.; Okuro, K.; Aida, T. Mechanically
robust, readily repairable polymers via tailored noncovalent cross-
linking. Science 2018, 359, 72−76.
(9) Cordier, P.; Tournilhac, F.; Soulie-Ziakovic, C.; Leibler, L. Self-
healing and thermoreversible rubber from supramolecular assembly.
Nature 2008, 451, 977−980.
(10) Chen, Y.; Kushner, A. M.; Williams, A. G.; Guan, Z. Multiphase
design of autonomic self-healing thermoplastic elastomers. Nat. Chem.
2012, 4, 467−472.
(11) Williams, G. A.; Ishige, R.; Chung, J.; Cromwell, O. R.;
Takahara, A.; Guan, Z. Mechanically Robust and Self-healable
Superlattice Nanocomposites by Self-assembly of Single-component
“Sticky” Polymer-grafted Nanoparticles. Adv. Mater. 2015, 27, 3934−
3941.
(12) Kang, J.; Son, D.; Wang, G-J. N.; Liu, Y.; Lopez, J.; Kim, Y.; Oh,
J. Y.; Katsumata, T.; Mun, J.; Lee, Y.; Jin, L.; Tok, J. B.-H.; Bao, Z.
Tough and water-insensitive self-healing elastomer for robust
electronic skin. Adv. Mater. 2018, 30, 1706846.
(13) Li, C.-H.; Wang, C.; Keplinger, C.; Zuo, J.-L.; Jin, O.; Sun, Y.;
Zheng, P.; Cao, Y.; Lissel, F.; Linder, C.; You, X.-Z.; Bao, Z. A highly
stretchable autonomous self-healing elastomer. Nat. Chem. 2016, 8,
618−624.
(14) Burnworth, M.; Tang, L.; Kumpfer, J. R.; Duncan, A. J.; Beyer,
F. L.; Fiore, G. L.; Rowan, S. J.; Weder, C. Optically healable
supramolecular polymers. Nature 2011, 472, 334−337.
(15) Sun, T. L.; Kurokawa, T.; Kuroda, S.; Ihsan, A. B.; Akasaki, T.;
Sato, K.; Haque, M. A.; Nakajima, T.; Gong, J. P. Physical hydrogels
H
J. Am. Chem. Soc. XXXX, XXX, XXX−XXX