Organometallics
Article
(4) (a) Kochi, T.; Noda, S.; Yoshimura, K.; Nozaki, K. J. Am. Chem. Soc.
2007, 129, 8948−8949. (b) Nozaki, K.; Kusumoto, S.; Noda, S.; Kochi,
T.; Chung, L. W.; Morokuma, K. J. Am. Chem. Soc. 2010, 132, 16030−
16042.
note that 1-13CH3-L does not form 13CH4 or 13CH3D in rigorously dry
(sodium−potassium alloy) thf-d8 up to 378 K for >5 h and that the same
thf-d8 batch was used for these ethylene oligomerizations in J. Young
tubes.
(5) Ito, S.; Munakata, K.; Nakamura, A.; Nozaki, K. J. Am. Chem. Soc.
2009, 131, 14606−14607.
(22) Carbon−phosphorus bond cleavage is not unprecedented:
(a) MacGregor, S. Chem. Soc. Rev. 2007, 36, 67−76. (b) Garrou, P. E.
Chem. Rev. 1985, 85, 171−185. (c) Morita, D. K.; Stille, J. K.; Norton, R.
K. J. Am. Chem. Soc. 1995, 117, 8576−8581. (d) Herrmann, W. A.;
(6) (a) Weng, W.; Shen, Z.; Jordan, R. F. J. Am. Chem. Soc. 2007, 129,
15450−15451. (b) Shen, Z.; Jordan, R. F. Macromolecules 2010, 43,
8706−8708.
̈
Broßmer, C.; Ofele, K.; Beller, M.; Fischer, H. J. Organomet. Chem. 1995,
(7) Ito, S.; Kanazawa, M.; Munakata, K.; Kuoda, J.; Okumura, Y.;
Nozaki, K. J. Am. Chem. Soc. 2011, 133, 1232−1235.
491, C1−C4. (e) Wakioka, M.; Ozawa, F. Organometallics 2010, 29,
5570−5578.
(8) (a) Runzi, T.; Frohlich, D.; Mecking, S. J. Am. Chem. Soc. 2010, 132,
̈
̈
(23) See, for example: (a) de Graaf, W.; Boersma, J.; Smeets, W. J. J.;
Spek, A. L.; van Koten, G. Organometallics 1989, 8, 2907−2917.
(b) Ledford, J.; Shultz, C. S.; Gates, D. P.; White, P. S.; DeSimone, J. M.;
Brookhart, M. Organometallics 2001, 20, 5266−5276.
17690−17691. (b) Daigle, J.-C.; Piche, L.; Claverie, J. P. J. P. Macromolecules
2011, 44, 1760−1762.
(9) (a) Skupov, K. M.; Piche, L.; Claverie, J. P. Macromolecules 2008,
41, 2390−2310. (b) Friedberger, T.; Wucher, P.; Mecking, S. J. Am.
Chem. Soc. 2012, 134, 1010−1018.
(24) See, for example: (a) Ref 19b. (b) Zhang, D.; Guironnet, D.;
Gottker-Schnetmann, I.; Mecking, S. Organometallics 2009, 28, 4072−
̈
(10) Guironnet, D.; Roesle, P.; Runzi, T.; Gottker-Schnetmann, I.;
̈
̈
4078.
Mecking, S. J. Am. Chem. Soc. 2009, 131, 422−423.
(25) (a) Skupov, K. M.; Hobbs, J.; Marella, P.; Conner, D.; Golisz, S.;
Goodall, B. L.; Claverie, J. P. Macromolecules 2009, 42, 6953−6963. (b)
Ref 24b.
(26) The mechanistic diversity for the exchange of phosphorus- and
metal-bound carbyls has been reviewed: see ref 22a.
(27) A similar formation of 1-(CH2)2nCH3-(lutidine) characterized by
1H, 31P, and 1H,1H-gCOSY NMR experiments has already been
reported: ref 12a.
(11) A broad scope of polar monomers can be incorporated in ethylene
copolymers with cationic phosphine-phosphineoxide Pd(II) complexes:
Carrow, B. P.; Nozaki, K. J. Am. Chem. Soc. 2012, 134, 8802−8805.
(12) Ethylene homopolymerization: (a) Noda, S.; Nakamura, A.;
Kochi, T.; Wa Chung, L.; Morokuma, K.; Nozaki, K. J. Am. Chem. Soc.
2009, 131, 14088−14100. Acrylate copolymerizations and homo-
oligomerization: (b) Guironnet, D.; Caporaso, L.; Neuwald, B.;
Gottker-Schnetmann, I.; Cavallo, L.; Mecking, S. J. Am. Chem. Soc.
̈
(28) (a) Hristov, H. I.; DeKock, R. L.; Anderson, G. D. W.; Gottker-
̈
2010, 132, 4418−4426.
Schnetmann, I.; Mecking, S.; Ziegler, T. Inorg. Chem. 2005, 44, 7806−
(13) The ratio, e.g., of [1-13CH3-dmso]:[ethylene], in these
experiments is ca. 4−12 times higher than in comparable ethylene
polymerizations catalyzed by 1-12CH3-dmso at an identical ethylene
pressure of 5 bar; cf. ref 10.
7818. (b) DeKock, R. L.; Hristov, I. H.; Anderson, G. D. W.; Gottker-
̈
Schnetmann, I.; Mecking, S.; Ziegler, T. Organometallics 2005, 24,
2679−2687.
(29) An unidentified chain coupling reaction of palladium carbyl
complexes has been proposed to account for the increased
polydispersity due to a bimodal distribution in living ethylene
polymerization by palladium diimine complexes. Cleavage of palladium
polymeryl species by triethylsilane after polymerization yields fully
saturated polymer chains and avoids bimodal molecular weight
distribution, thus narrowing polydispersities: Gottfried, A. C.;
Brookhart, M. Macromolecules 2001, 34, 1140−1142.
(14) On exemplified polyethylene samples we have determined T1-
relaxation times in the range of 1−1.5 s for all aliphatic carbon atoms.
Based on these T1-values, quantitative 13C NMR analyses were
conducted with a relaxation delay of 7 s using inverse gated decoupling
techniques.
(15) We note that at lower [precatalyst], e.g., [1-13CH3-L] = 20−50
μmol L−1, under saturation kinetic behavior (>10 bar ethylene for 1-
CH3-dmso and > 15 bar for 1-CH3-pyr), negligible catalyst deactivation
is observed over 30 and 60 min polymerization experiments by mass
flow monitoring, resulting in nearly polymerization time-independent
turnover numbers; cf. ref 10.
(30) Complete inactivity of [κ2-(anisyl)2P,O)]2Pd (11) in ethylene
polymerizations was also proven on a preparative scale with 10 μmol of
11 under 5 bar ethylene pressure, 60 min polymerization time, in
toluene at 363 K.
(16) Note that the respective 13C NMR experiments do not allow for
an accurate quantification, since the relaxation delay was set to 1 s, and
magnetization transfer from 1H was not suppressed during the relaxation
delay.
(31) X-ray diffraction analyses of five different palladium hydride
complexes with a trans-disposition of oxygen and hydride at the
palladium center have been deposited in the Cambrigde Crystallo-
graphic Database. In all these analyses the hydride was located in the
electron density map and the palladium hydride bond distances range
from 1.46 Å for electron-deficient oxygen donors (pentafluoropheno-
late) to 1.57 Å (phenolate, H2O, arene carboxylate): (a) Braga, D.;
Sabatino, P.; Di Bugno, C.; Leoni, P.; Pasquali, M. J. Organomet. Chem.
1987, 334, C46−C48. (b) Di Bugno, C.; Pasquali, M.; Sabatino, P.;
Braga, D. Inorg. Chem. 1989, 28, 1390−1394. (c) Leoni, P.; Sommovigo,
M.; Pasquali, M.; Midollini, S.; Braga, D.; Sabatino, P. Organometallics
1991, 10, 1038−1044. (d) Konnick, M. M.; Gandhi, B. A.; Guzei, I. A.;
Stahl, S. S. Angew. Chem., Int. Ed. 2006, 45, 2904−2907. (e) Konnick, M.
M.; Decharin, N.; Popp, B. V.; Stahl, S. S. Chem. Sci. 2011, 2, 326−330.
(32) The parent complex bis[(κ2-P,O)-diphenylphosphine benzene-
sulfonato]palladium has been analyzed by X-ray crystallography: (a)
CCDC no. 246480: Schultz, T.; Pfaltz, A. Synthesis 2005, 1005−1011.
(b) CCDC no. 274818: Hearley, A. K.; Nowack, R. J.; Rieger, B.
Organometallics 2005, 24, 2755−2763.
(17) 13C,13C-J-resolved NMR experiments and INADEQUATE
experiments did not support the existence of measurable quantities of
13C−13C connections for these signals under discussion, while a
13C−13C connection was established for the S1−S2 end group couple of
formed oligomers.
(18) β-Hydride elimination after such 1,2-insertion of 1-olefins would
yield vinylidene end groups, which were indeed observed to form by 1H
NMR experiments in the late stage of the oligomerization, i.e., when
most of the added ethylene was consumed.
(19) (a) Kanazawa, M.; Ito, S.; Nozaki, K. Organometallics 2011, 30,
6049−6052. (b) Vela, J.; Lief, G. R.; Shen, Z.; Jordan, R. F.
Organometallics 2007, 26, 6624−6635.
(20) The 13C-labeled S1 end group of P-capped polymer chains is likely
indistinguishable from S1 end groups in pure hydrocarbon polymer
chains by 13C NMR spectroscopy and qualifies as “polymer” despite the
P-capping. However, short-chain alkylphosphine species, e.g., methyl-
and propylphosphine species, containing 13CH3-label are expected to
exhibit different chemical 13C NMR shifts as compared to S1 end groups
and do not qualify as “polymer”. Consequently, some 13C-label will not
at all be incorporated into the “polymer”.
(33) The NMR yield is likely underestimated, as some of the formed
methane and H2 will be present in the headspace of the NMR tube.
(34) Note that for related anilidotropone nickel polymerization
catalysts reductive elimination of anilinotropone from nickel hydride
intermediates has been convincingly proposed to account for the
formation of analogous, polymerization-inactive [N,O]2Ni complexes:
Jenkins, J. C.; Brookhart, M. J. Am. Chem. Soc. 2004, 126, 5827−5842.
(21) While formation of (13)CH4 may in principle result from
hydrolysis with adventious traces of water in the reaction medium, we
8405
dx.doi.org/10.1021/om300969d | Organometallics 2012, 31, 8388−8406