4748
G. Bianchini et al. / Bioorg. Med. Chem. 13 (2005) 4740–4749
4. Birkedal-Hansen, H.; Moore, W. G. I.; Bodden, M. K.;
M.; Larsen, Y. B.; Meldal, M.; Foged, N. T. Curr. Med.
Chem. 2001, 8, 967; (c) Caldwell, C. G.; Sahoo, S. P.; Polo,
S. A.; Eversole, R. R.; Lanza, T. J.; Mills, S. G.;
Niedzwiecki, L. M.; Izquierdo-Martin, M.; Chang, B.
C.; Harrison, R. K.; Kuo, D. W.; Lin, T.-Y.; Stein, R. L.;
Durette, P. L.; Hagmann, W. K. Bioorg. Med. Chem. Lett.
1996, 6, 323–328; (d) Goulet, J. L.; Kinneary, J. F.;
Durette, P. L.; Stein, R. L.; Harrison, R. K.; Izquierdo-
Martin, M.; Kuo, D. W.; Lin, T.-Y.; Hagmann, W. K.
Bioorg. Med. Chem. Lett. 1994, 4, 1221–1224.
Windsor, L. J.; Birkedal-Hansen, B.; De Carlo, A.; Engler,
J. A. Crit. Rev. Oral Biol. Med. 1993, 4, 197–250.
5. (a) Woessner, J. F.; Nagase, H. Matrix Metalloproteinases
and TIMPs; Oxford University Press: New York, 2000; (b)
Denhardt, D. T.; Feng, B.; Edwards, D. R.; Cocuzzi, E.
T.; Malyankar, U. M. Pharmacol. Ther. 1993, 59, 329–341.
6. Pyke, C.; Ralfkiaer, E.; Huhtala, P.; Hurskainen, T.;
Dano, K.; Tryggvason, K. Cancer Res. 1992, 52, 1336–
1341.
7. Stetler-Stevenson, W. G.; Aznavoorian, S.; Liotta, L. A.
Annu. Rev. Cell Biol. 1993, 9, 541–573.
8. Gijbels, K.; Masure, S.; Carton, H.; Opdenakker, G.
J. Neuroimmunol. 1992, 41, 29–34.
9. Murphy, G.; Hembry, R. M. J. Rheumatol. 1992, 19, 61–
64.
10. (a) Peress, N.; Perillo, E.; Zucher, S. J. Neuropathol. Exp.
Neurol. 1995, 54, 16–22; (b) Lopez, B.; Gonzalez, A.; Diez,
J. Curr. Opin. Nephrol. Hypertens. 2004, 13, 197–204.
11. (a) Martin, D. C.; Sanchez-Sweatman, O. H.; Inderdeo, D.
S.; Tsao, M. S.; Khokha, R. Lab. Invest. 1999, 79, 225–
22. (a) Netzel-Arnett, S.; Fields, G.; Birkedal-Hansen, H.;
Van Wart, H. E. J. Biol. Chem. 1991, 266, 1; (b) Netzel-
Arnett, S.; Sang, Q.-X.; Moore, W. G. I.; Navre, M.;
Birkedal-Hansen, H.; Van Wart, H. E. Biochemistry 1993,
32, 6427; (c) Bode, W.; Reinemer, P.; Huber, R.; Kleine,
T.; Schnierer, S.; Tschesche, H. EMBO J. 1994, 13, 1263;
(d) Grams, F.; Reinemer, P.; Powers, J. C.; Kleine, T.;
Pieper, M.; Tschesche, H.; Huber, R.; Bode, W. Eur. J.
Biochem. 1995, 228, 830.
23. For an excellent discussion concerning the chemistry and
biological activity of aminophosphonic and aminophos-
phinic acids see: Aminophosphonic and Aminophosphinic
Acids; Kukhar, V. P., Ed.; Wiley: Chichester, 2000.
24. (a) Boyd, E. A.; Regan, A. C.; James, K. Tetrahedron Lett.
1994, 35, 4223–4226; (b) Boyd, E. A.; Regan, A. C.; James,
K. Tetrahedron Lett. 1992, 33, 813–816.
25. CAUTION: due to its pyrophoric character, BTSP was
prepared in situ and directly used in the reaction with alkyl
iodides.
26. (a) Ko¨nig, W.; Geiger, R. Chem. Ber. 1970, 103, 788–798;
(b) Solas, D.; Hale, R. L.; Patel, D. V. J. Org. Chem. 1996,
61, 1537–1539.
27. Recombinant Human pro-MMP-2 and -8 were purchased
from R&D Systems, catalogue numbers, respectively, 902-
MP and 908-MP; the fluorogenic peptide QF24, used as a
very sensitive substrate for in situ determination of MMP
activity, was purchased from Bachem, Cat. No. M-1895.
28. Amadei, A.; Linssen, A. B. M.; Berendsen, H. J. C.
Proteins 1993, 17, 412–425.
29. The free energy calculations were carried out by preven-
tively dividing the essential plane in 2500 intervals. The
trajectory was then projected on this plane and the
probability (qn) of finding the trajectory within each nth
234; (b) Kruger, A.; Fata, J. E.; Khokha, R. Blood 1997,
¨
90, 1993–2000.
´
12. Overall, C. M.; Lopez-Otin, C. Nat. Rev. Cancer 2002, 2,
657–672.
13. (a) Peterson, J. T. Heart Fail. Rev. 2004, 9, 63–79; (b)
Skiles, J. W.; Gonnella, N. C.; Jeng, A. Y. Curr. Med.
Chem. 2004, 11, 2911–2977; (c) Michaelides, M. R.;
Curtin, M. L. Curr. Pharm. Design 1999, 5, 787–819; (d)
Whittaker, M.; Floyd, C. D.; Brown, P.; Gearing, A. J. H.
Chem. Rev. 1999, 99, 2735–2776.
14. Muri, E. M. F.; Nieto, M. J.; Sindelar, R. D.; Williamson,
J. S. Curr. Med. Chem. 2002, 9, 1631–1653.
15. Babine, E. R.; Bender, S. L. Chem. Rev. 1997, 97, 1359–
1472.
16. Freskos, J. N.; McDonald, J. J.; Mischke, B. V.; Mullins,
P. B.; Shieh, H. S.; Stegeman, R. A.; Stevens, A. M.
Bioorg. Med. Chem. Lett. 1999, 9, 1757–1760.
17. Tamura, Y.; Watanabe, F.; Nakatani, T.; Yasui, K.; Fuji,
M.; Komurasaki, T.; Tsuzuki, H.; Maekawa, R.;
Yoshioka, T.; Kawada, K.; Sugita, K.; Ohtani, M. J.
Med. Chem. 1998, 41, 640–649.
18. Hodgson, J. Biotechnology 1995, 13, 554–557.
19. (a) DꢀAlessio, S.; Gallina, C.; Gavuzzo, E.; Giordano, C.;
Gorini, B.; Mazza, F.; Paglialunga Paradisi, M.; Panini,
G.; Pochetti, G.; Sella, A. Bioorg. Med. Chem. 1999, 7,
389–394; (b) Cirilli, M.; Gallina, C.; Gavuzzo, E.; Giord-
ano, C.; Gomis-Ruth, F. X.; Gorini, B.; Kress, L. F.;
Mazza, F.; Paglialunga Paradisi, M.; Pochetti, G.; Politi,
V. FEBS Lett. 1997, 418, 319–322; (c) Gavuzzo, E.;
Pochetti, G.; Mazza, F.; Gallina, C.; Gorini, B.; DꢀAlessio,
S.; Pieper, M.; Tschesche, H.; Tucker, P. A. J. Med. Chem.
2000, 43, 3377–3385; (d) Aschi, M.; Roccatano, D.; Di
Nola, A.; Gallina, C.; Gavuzzo, E.; Pochetti, G.; Pieper,
M.; Tschesche, H.; Mazza, F. J. Comput.-Aided Mol. Des.
2002, 16, 213–225.
20. (a) Finzel, B. C.; Baldwin, E. T.; Bryant, G. L., Jr.; Hess,
G. F.; Wilks, J. W.; Trepod, C. M.; Mott, J. E.; Marshall,
V. P.; Petzold, G. L.; Poorman, R. A.; OꢀSullivan, T. J.;
Schostarez, H. J.; Mitchell, M. A. Protein Sci. 1998, 7,
2118–2126; (b) Yeh, L. A.; Chen, J.; Baculi, F.; Gingrich,
D. E.; Shen, T. Y. Bioorg. Med. Chem. Lett. 1995, 5, 1637–
1642; (c) Reiter, L. A.; Mitchell, P. G.; Martinelli, G. J.;
Lopresti-Morrow, L. L.; Yocum, S. A.; Eskra, J. D.
Bioorg. Med. Chem. Lett. 2003, 13, 2331–2336.
interval was evaluated. The Helmholtz free energy ðDAi0ꢀj
Þ
for the transition from an interval ꢁiꢀ to an interval ꢁjꢀ can
be simply calculated using the standard relation
DA0iꢀj ¼ ꢀkT lnðqj=qiÞ where k is the Boltzmann constant.
30. Van der Spoel, D.; van Drunen R.; Berendsen, H.J.C.,
‘‘GRoningen MAchine for Chemical Simulations,’’ Dept.
of Biophysical Chemistry, BIOSON Research Institute,
Nijenborgh 4 NL-9717 AG Groningen, 1994, e-mail to
31. Schmidt, M. W.; Baldridge, K. K.; Boatz, J. A.; Elbert, S.
T.; Gordon, M. S.; Jensen, J. J.; Koseki, S.; Matsunaga,
N.; Nguyen, K. A.; Su, S.; Windus, T. L.; Dupuis, M.;
Montgomery, J. J. Comput. Chem. 1993, 14, 1347.
32. Feenstra, K. A.; Hess, B.; Berendsen, H. J. C. J. Comput.
Chem. 1999, 20, 786.
33. The temperature was kept constant by the isogaussian
algorithm.34 Periodic boundary conditions (pbc) were
systematically applied and a cut-off of 1.10 nm was
considered when Lennard-Jones (LJ) forces were com-
puted. The long range electrostatics was calculated using
the particle mesh ewald method (PME),35 and the algo-
rithm LINCS36 was used to constrain all bond lengths. We
also used roto-translational constraints to stop the solute
in the simulated box.37
21. The following references are cited as selected examples:
(a) Matziari, M.; Beau, F.; Cuniasse, P.; Dive, V.;
Yiotakis, A. J. Med. Chem. 2004, 47, 325–336; (b) Schiødt,
C. B.; Buchardt, J.; Terp, G. E.; Christensen, U.; Brink,
34. Evans, D. J.; Morriss, G. P. In Statistical Mechanics of
Non-Equilibrium Liquids; Academic Press: London, 1990.