4816
C. A. Canaria et al. / Tetrahedron Letters 46 (2005) 4813–4816
anhydrous DMF led to the formation of 5 (73% yield).
The azide 6 was prepared in almost quantitative yield
(99%) by stirring 5 in large excess of NaN3 in DMF/
H2O. Reaction of this compound to excess amount of
1,12 dibromododecane resulted in the attachment of
the azotriethylene glycol to the alkyl chain to yield 12-
(azotriethyleneoxy)-1-bromododecane 7 in low yield
(24% yield). The resulting bromoalkane 7 was refluxed
with thiourea in ethanol, followed by hydrolysis by
NaOH solution, affording the diazodo disulfide 8
(46% yield). The reduction of the azo group by triphen-
ylphosphine in THF provided the corresponding
amine; after protection by tert-butoxycarbonate, 9
was obtained in excellent yield (82% yield). The removal
of the tert-butoxycarbonate group by trifluoroacetic
acid (TFA) in CH2Cl2 gave ammoniumtriethyleneoxy-
dodecane disulfide 10 (80% yield). The introduction of
biotin to the linker through a reaction of the corre-
sponding amine to the activated biotin derivative 4
was straightforward. The benefit of this reaction is its
application for the attachment of a carboxylated mole-
cule of choice.26 The final compound 12 can be pre-
pared by a simple reduction of the disulfide 11 by
dithiothreitol (DTT) in basic medium.
References and notes
1. Spinke, J.; Liley, M.; Guder, H.-J.; Angermaier, L.; Knoll,
W. Langmuir 1993, 9, 1821–1825.
2. Spinke, J.; Liley, M.; Schmitt, F.-J.; Guder, H.-J.; Anger-
maier, L.; Knoll, W. J. Chem. Phys. 1993, 99, 7012–7019.
3. Houseman, B. T.; Gawalt, E. S.; Mrksich, M. Langmuir
2003, 19, 1522–1531.
4. Houseman, B. T.; Mrksich, M. Chem. and Biol. 2002, 9,
443–454.
5. Houseman, B. T.; Huh, J. H.; Kron, S. J.; Mrksich, M.
Nature Biotechnol. 2002, 20, 270–274.
6. Smith, E. A.; Wanat, M. J.; Cheng, Y.; Barreira, S.;
Frutos, A. G.; Corn, R. M. Langmuir 2001, 17, 2502–2507.
7. Schumaker-Parry, J.; Zareie, M.; Aebersold, R.; Camp-
bell, C. Anal. Chem. 2004, 76, 918–929.
8. Hodneland, C. D.; Mrksich, M. Langmuir 1997, 13, 6001–
6003.
9. Bigelow, W.; Pickett, D.; Zisman, W. J. Colloid Interface
Sci. 1946, 1.
10. Nuzzo, R. G.; Allara, D. L. J. Am. Chem. Soc. 1983, 105,
4481–4483.
11. Nuzzo, R. G.; Fusco, F. A.; Allara, D. L. J. Am. Chem.
Soc. 1987, 109.
12. Schreiber, F. Prog. Surf. Sci. 2000, 65, 151–256.
13. Strong, L.; Whitesides, G. M. Langmuir 1988, 4, 546.
14. Chidsey, C. E. D.; Liu, G.; Rowntree, P.; Scoles, G.
J. Chem. Phys. 1989, 92, 4421.
In summary, we have designed and synthesized two bio-
functionalized alkyl thiols. The synthesis of 11-(mer-
captoundecyl)triethylene glycol 1 in three steps has
provided a feasible alternative method. Furthermore,
mercaptododecyltriethyleneoxy biotin amide 12 is novel
and viable for the formation of SAMs. The intermediate
aminotriethyleneoxydodecanethiol 11 will be very useful
for attachment of any activated carboxyl groups in
order to make novel receptors for biosensor develop-
ment. Finally, the surface studies using these molecules
will be published separately.
15. Chidsey, C. E. D.; Loiacono, D. N. Langmuir 1990, 6, 682.
16. Prime, K.; Whitesides, G. M. Science 1991, 252, 1164–1166.
17. Andrade, J.; Hlady, V.; Jeon, S. Adv. Chem. Ser. 1996,
248, 51–59.
18. Lee, J.; Lee, H.; Andrade, J. Prog. Polym. Sci. 1995, 20,
1043–1079.
19. Golander, C. G.; Herron, J. N.; Lim, K.; Claesson, P.;
Stenius, P.; Andrade, J. D. Properties of Immobilizated
Peg Films and the Interaction with Proteins. In Poly(Eth-
ylene Glycol) Chemistry, Biotechnical and Biomedical
Applications; Harris, J., Ed.; Plenum: New York, 1992,
pp 221–245.
20. Holmberg, K.; Bergstrom, K.; Stark, M. B. Immobiliza-
tion of Proteins Via Peg Chains. In PolyEthylene Glycol
Chemistry, Biotechnical and Biomedical Applications; Har-
ris, J., Ed.; Plenum: New York, 1992, pp 303–324.
21. Wang, R.; Kreuzer, H.; Grunze, M. J. Phys. Chem. B
1997, 101, 9767–9773.
22. Churaev, N. S. I. P.; Sonolef, V. D. J. Colloid Interface
Sci. 1995, 169, 300–305.
23. Pale-Grosdemange, C.; Simon, E.; Prime, K.; Whitesides,
G. J. Am. Chem. Soc. 1991, 113, 12–20.
Acknowledgements
This research was funded under DARPA grant
MLR.00018-3AFOSR.000019. The authors thank B.
Axelrod, J. Arlett, and M. Muluneh of the Caltech
BioNEMS group for support in substrate fabrication.
24. Nelson, K. E.; Gamble, L.; Jung, L. S.; Boeckl, M. S.;
Naeemi, E.; Golledge, S. L.; Sasaki, T.; Castner, D. G.;
Campbell, C. T.; Stayton, P. S. Langmuir 2001, 17, 2807–
2816.
25. Knoll, W.; Schmitt, F.; Klein, C. International Patent
Application WO 92/10757, Boehringer Mannheim BmbH,
BRD.
Supplementary data
Materials, detailed synthesis, and product characteriza-
tion can be found in the Supplementary data.
Supplementary data associated with this article can
26. Hermanson, G. Zero Length Cross Linkers. In Bioconju-
gate Techniques; Academic: San Diego, 1996, pp 169–181.