Fig. 4 Change in Amax of gold particles derivatised with 1a (open triangles), 1b (solid triangles), 2a (open squares), 2b (solid squares) with (A) 0–20 mg/ml
Con A and; (B) with 5 mg/ml Con A after 10 min, 1.5 h and 18 h. (The lines on both A and B are shown for line of sight only.)
2001, 40, 2257; (b) M. J. Hernaiz, J. M. de la Fuente, A. G. Barrientos
All four sets of particles were evaluated for non-specific
and S. Penades, Angew. Chem., Int. Ed., 2002, 41, 1554.
binding using the set of proteins used previously in SPR studies
3 (a) K. R. Love and P. H. Seeberger, Angew. Chem., Int. Ed., 2002, 41,
at 50 mg/ml. Non-specific particle aggregation was assessed by a
red shift of Amax (ESI). Mannoside-thiol 1a derivatised particles
showed a degree of non-specific binding to all proteins, whilst only
fibrinogen induced aggregation of particles derived from trimanno-
side 2a. Essentially no non-specific aggregation of particles derived
from thioctic-amides 1b and 2b was observed; specific binding to
Con A is substantially higher than non-specific binding to particles
derived with the thioctic-amide-based ligands. These results are
similar to those obtained for non-specific binding of the same
proteins to SAMs on the SPR chips. Further, the induced
aggregation of thioctic-amide 2b derivatised particles by 2.5 mg/ml
Con A in the presence of up to 50 mg/ml fibrinogen exhibited ,
10% competitive binding (ESI).
3583; (b) B. T. Houseman and M. Mrksich, Chem. Biol., 2002, 9, 443; (c)
M. D. Disney and P. H. Seeberger, Chem. Biol., 2004, 11, 1701; (d)
D. M. Ratner, E. W. Adams, J. Su, B. R. O’Keefe, M. Mrksich and
P. H. Seeberger, ChemBioChem, 2004, 5, 379.
4 (a) K. L. Prime and G. M. Whitesides, J. Am. Chem. Soc., 1993, 115,
10714; (b) M. Mrksich, J. R. Grunwell and G. M. Whitesides, J. Am.
Chem. Soc., 1995, 117, 1209; (c) P. Harder, M. Grunze, R. Dahint,
G. M. Whitesides and P. E. Laibinis, J. Phys. Chem., 1998, 102, 426; (d)
J. Lahri, L. Issacs, J. Tien and G. M. Whitesides, Anal. Chem., 1999, 71,
777.
5 D. C. Hone, A. H. Haines and D. A. Russell, Langmuir, 2003, 19, 7141.
6 (a) H. Otsuka, Y. Akiyama, Y. Nagasaki and K. Kataoka, J. Am.
Chem. Soc., 2001, 123, 8226; (b) C. C. Lin, Y.-C. Yeh, C.-Y. Yang,
G.-F. Chen, Y. C. Chen, Y.-C. Wu and C.-C. Chen, Chem. Commun.,
2003, 2920.
7 (a) M. Lewis, M. Tarlov and K. Carrou, J. Am. Chem. Soc., 1995, 117,
9574; (b) A. Ulman, Chem. Rev., 1996, 96, 1533.
8 See for example: (a) Y. Miura, S. Kimura, Y. Imanishi and J. Umemura,
Langmuir, 1998, 14, 6935; (b) Y. Dong and C. Shannon, Anal. Chem.,
2000, 72, 2371; (c) J. C. Love, L. A. Estroff, J. K. Kriebel, R. G. Nuzzo
and G. M. Whitesides, Chem. Rev., 2005, 105, 1103.
In conclusion, the thioctic-amide system serves as an accessible
and effective method for carbohydrate presentation on gold
surfaces in a manner that limits non-specific protein binding whilst
enhancing specific binding of the target lectin.
9 B. Garcia, M. Salome, L. Lemelle, J.-L. Bridot, P. Gillet, P. Perriat,
S. Roux and O. Tillement, Chem. Commun., 2005, 369.
10 (a) D. K. Mandal, N. Kishore and C. F. Brewer, Biochemistry, 1994, 33,
1149. Crystallographic studies have revealed the structural basis for high
affinity binding of trimannoside by Con A – ; J. H. Naismith and
R. A. Field, J. Biol. Chem., 1996, 271, 972.
This work was supported by the EPSRC Crime Prevention
Programme (GR/S64134/01) and the RCUK Basic Technologies
Programme (GR/S79268/01). We gratefully acknowledge the
EPSRC Mass Spectrometry Service Centre, University of Wales,
Swansea, for invaluable support.
11 A linear response of carbohydrate-presenting surfaces to lectins is
typically only seen at ligand coverage (, 5%) (ref. 1b).
Rositsa Karamanska, Balaram Mukhopadhyay, David A. Russell* and
Robert A. Field*
Centre for Carbohydrate Chemistry, School of Chemical Sciences and
Pharmacy, University of East Anglia, Norwich, UK NR4 7TJ.
E-mail: d.russell@uea.ac.uk; r.a.field@uea.ac.uk; Fax: +44-1603-59203;
Tel: +44-01603 593145
12 RCA120 m.w. 120 kDa, isoelectric point 7.5–7.9, binds a-D-galactose;
TPL: isoelectric point 7.3, affinity for a-D-fucose; Fibrinogen: isoelectric
point 5.5, a structurally complex, flexible molecule of approximately
340 kDa; Cytochrome c: isoelectric point 9.1–9.5, m.w. 12.4 kDa,
displays a significant level of non-specific adsorption to surfaces
presenting carboxylic acid groups: M. Collinson, E. F. Bowden and
M. J. Tarlov, Langmuir, 1992, 8, 1247; J. Lahiri, G. D. Fate,
S. B. Ungash and J. T. Groves, J. Am. Chem. Soc., 1996, 118, 2347.
13 Non-specifically adsorbed proteins could be removed from both surfaces
by washing with 0.1 M HCl, so regenerating functional surfaces.
Surfaces prepared with thioctic-amide 2b retained 73% of their binding
capacity after six cycles of Con A injection–regeneration and storage at
4 uC for three months whilst those prepared from thiol 2a lost specific
binding to Con A after similar treatment and storage of the sensor chip.
14 (a) J. L. Coffer, J. R. Shapley and H. G. Drickamer, J. Am. Chem. Soc.,
1990, 112, 3736; (b) R. Elghanian, J. J. Storhoff, R. C. Mucic,
R. L. Letsinger and C. A. Mirkin, Science, 1997, 277, 1078.
15 B. V. Enustun and J. Turkevich, J. Am. Chem. Soc., 1963, 85, 3317.
Notes and references
1 (a) D. J. Revell, J. R. Knight, D. J. Blyth, A. H. Haines and
D. A. Russell, Langmuir, 1998, 14, 4517; (b) E. A. Smith, W. D. Thomas,
L. L. Kiessling and R. M. Corn, J. Am. Chem. Soc., 2003, 125, 6140; (c)
N. Noran, L. Yan, H. Isobe, G. M. Whitesides and D. Kahne, Proc.
Natl. Acad. Sci. U. S. A., 1999, 96, 11782; (d) R. Yonzon, E. Jeoung,
S. Zou, G. C. Schatz, M. Mrksich and R. P. V. Duyne, J. Am. Chem.
Soc., 2004, 126, 12669.
2 (a) J. M. de la Fuente, A. G. Barrientos, T. C. Rojas, J. Rojo,
J. U. Canada, A. Fernandez and S. Penades, Angew. Chem., Int. Ed.,
3336 | Chem. Commun., 2005, 3334–3336
This journal is ß The Royal Society of Chemistry 2005