although total syntheses of swinholide A have been reported
by two groups, those of Paterson7a-e and Nicolaou.7f
Recently, we reported a stereoselective total synthesis of
scytophycin C based on new acyclic stereocontrol.8,9 As part
of our synthetic program toward the polypropionate-derived
natural products,6e,8,10 we report herein the first synthesis of
premisakinolide A (2), the monomeric counterpart of mis-
akinolide A (1),2 which involves a crucial coupling of a
tetrahydropyran fragment and an alkynylaluminum reagent
having a polypropionate chain bearing five consecutive
stereogenic centers, the highly stereoselective cross aldol
reaction of segment A and segment B, and the stereospecific
construction of the polypropionate structures in these seg-
ments as the key steps.
Scheme 1. Synthetic Strategy of Misakinolide A (1)
Our retrosynthesis of premisakinolide A (2) is shown in
Scheme 1. Namely, 2 was divided into the C(1)-C(16)
segment (segment A) and the C(17)-C(30) segment (seg-
ment B), and both segments were designed to connect by
an aldol reaction at the C16 and C17 positions under Felkin-
Anh control similarly to the synthesis of scytophycin C.8,9
Segment A, including a dihydropyran ring bearing trans-
substituted side chains, could be straightforwardly synthe-
sized from the intermediate 3 used in our total synthesis of
scytophycin C.8 On the other hand, to construct segment B
containing a tetrahydropyran ring and eight asymmetric
carbon atoms, we envisaged the coupling reaction of the
tetrahydropyran derivative 4 and the alkynyl segment 5
having five consecutive stereogenic centers.
Segment A was straightforwardly synthesized starting from
the intermediate 3 in the synthesis of scytophycin C8
according to Scheme 2, which involves the Grubbs olefin
metathesis and chemoselective reduction of epoxy aldehyde
as the key steps.
(5) (a) Moore, R. E.; Patterson, G. M. L.; Mynderse, J. S.; Barchi, J.,
Jr.; Norton, T. R.; Furusawa, E.; Furusawa, S. Pure. Appl. Chem. 1986,
58, 263. (b) Moore, R. E.; Banarjee, S.; Bornemann, V.; Caplan, F. R.;
Chen, J. L.; Corley, D. E.; Larsen, L. K.; Moore, B. S.; Patterson, G. M.
L.; Paul, V. J.; Stewart, J. B.; Williams, D. E. Pure. Appl. Chem. 1989, 61,
521. (c) Valeriote, F. A.; Moore, R. E.; Patterson, G. M. L.; Paul, V. J.;
Sheuer, P. J.; Corbett, T. H. In Anticancer Drug DiscoVery and DeVelop-
ment: Natural Products and New Molecular Models; Valeriote, F. A.,
Corbett, T. H., Baker, L. H., Eds.; Kluwer Academic Publishers: Norwell,
MA, 1994; pp 1-25.
(6) (a) Patron, A. P.; Richter, P. K.; Tomaszewski, M. J.; Miller, R. A.;
Nicolaou, K. C. J. Chem. Soc., Chem. Commun. 1994, 1147. (b) Richter,
P. K.; Tomaszewski, M. J.; Miller, R. A.; Patron, A. P.; Nicolaou, K. C. J.
Chem. Soc., Chem. Commun. 1994, 1151. (c) Nakata, T.; Komatsu, T.;
Nagasawa, K.; Yamada, H.; Takahashi, T. Tetrahedron Lett. 1994, 35, 8225.
(d) Nakata, T.; Komatsu, T.; Nagasawa, K. Chem. Pharm. Bull. 1994, 42,
2403. (e) Hayakawa, H.; Miyashita, M. J. Chem. Soc., Perkin Trans. 1
1999, 3399. (f) Yeung, K.-S.; Paterson, I. Angew. Chem., Int. Ed. 2002,
41, 4632.
(7) (a) Paterson, I.; Yeung, K.-S.; Ward, R. A.; Cumming, J. G.; Smith,
J. D. J. Am. Chem. Soc. 1994, 116, 9391. (b) Paterson, I.; Cumming, J. G.;
Ward, R. A.; Lamboley, S. Tetrahedron 1995, 51, 9393. (c) Paterson, I.;
Smith, J. D.; Ward, R. A. Tetrahedron 1995, 51, 9413. (d) Paterson, I.;
Ward, R. A.; Smith, J. D.; Cumming, J. G.; Yeung, K.-S. Tetrahedron 1995,
51, 9437. (e) Paterson, I.; Yeung, K.-S.; Ward, R. A.; Smith, J. D.;
Cumming, J. G.; Lamboley, S. Tetrahedron 1995, 51, 9467. (f) Nicolaou,
K. C.; Patron, A. P.; Ajito, K.; Richter, P. K.; Khatuya, H.; Bertinato, P.
Miller, R. A.; Tomaszewski, M. J. Chem. Eur. J. 1996, 2, 847.
(8) (a) Nakamura, R.; Tanino, K.; Miyashita, M. Org. Lett. 2003, 5, 3579.
(b) Nakamura, R.; Tanino, K.; Miyashita, M. Org. Lett. 2003, 5, 3583.
(9) Total synthesis of scytophycin C by Patterson et al.: (a) Paterson,
I.; Watson, C.; Yeung, K.-S.; Wallace, P. A.; Ward, R. A. J. Org. Chem.
1997, 62, 452. (b) Paterson, I.; Yeung, K.-S.; Watson, C.; Ward, R. A.;
Wallace, P. A. Tetrahedron 1998, 54, 11935. (c) Paterson, I.; Watson, C.;
Yeung, K.-S.; Ward, R. A.; Wallace, P. A. Tetrahedron 1998, 54, 11955.
(d) Ref 6f.
Thus, treatment of 3 with the second-generation Grubbs’
catalyst11 (2 mol %) and crotonaldehyde in CH2Cl2 at reflux
gave unsaturated aldehyde 6 in 78% yield. The product was
then converted to â-epoxy alcohol 7 in two steps in 90%
yield: (1) reduction with DIBAH in THF (92%) and (2) the
Katsuki-Sharpless asymmetric epoxidation12 (98%). Oxida-
tion of the epoxy diol 7 with Dess-Martin periodinane13
followed by treatment of the resulting epoxy aldehyde with
Na[PhSeB(OEt)3]14 and AcOH in EtOH furnished hydroxy
aldehyde 8, which was then subjected to a Wittig reaction
with Ph3PdC(CH3)CO2Me in toluene to give rise to the (E)-
unsaturated ester in 69% yield for three steps. Notably,
chemoselective reduction of the epoxide functionality in the
epoxy aldehyde cleanly occurred with the use of benzene-
(10) (a) Shiratani, T.; Kimura, K.; Yoshihara, K.; Hatakeyama, S.; Irie,
H.; Miyashita, M. Chem. Commun. 1996, 21. (b) Komatsu, K.; Tanino, K.;
Miyashita, M. Angew. Chem., Int. Ed. 2004, 43, 4341. (c) Iwata, Y.;
Maekawara, N.; Tanino, K.; Miyashita, M. Angew. Chem., Int. Ed. 2005,
44, 1532.
(11) Chatterjee, A. K.; Choi, T.-L.; Sanders, A. P.; Grubbs, R. H. J.
Am. Chem. Soc. 2003, 125, 11360.
2930
Org. Lett., Vol. 7, No. 14, 2005