Organic Process Research & Development
Communication
́
(3) (a) Durandetti, M.; Gosmini, C.; Perichon, J. Ni-catalyzed
Transition Metal-Catalyzed Couplings in Process Chemistry; Magano, J.,
Dunetz, J. R., Eds.; Wiley-VCH: Weinheim, Germany, 2013; pp 15−
23.
activation of α-chloroesters: a simple method for the synthesis of α-
arylesters and β-hydroxyesters. Tetrahedron 2007, 63, 1146. (b) Ever-
son, D. A.; Shrestha, R.; Weix, D. J. Nickel-Catalyzed Reductive
Cross-Coupling of Aryl Halides with Alkyl Halides. J. Am. Chem. Soc.
2010, 132, 920. (c) Amatore, M.; Gosmini, C. Direct Method for
Carbon-Carbon Bond Formation: The Functional Group Tolerant
Cobalt-Catalyzed Alkylation of Aryl Halides. Chem. - Eur. J. 2010, 16,
5848. (d) Everson, D. A.; Jones, B. A.; Weix, D. J. Replacing
Conventional Carbon Nucleophiles with Electrophiles: Nickel-
Catalyzed Reductive Alkylation of Aryl Bromides and Chlorides. J.
Am. Chem. Soc. 2012, 134, 6146. (e) Wang, S.; Qian, Q.; Gong, H.
Nickel-Catalyzed Reductive Coupling of Aryl Halides with Secondary
Alkyl Bromides and Allylic Acetate. Org. Lett. 2012, 14, 3352.
(4) (a) Molander, G. A.; Wisniewski, S. R.; Traister, K. M. Reductive
Cross-Coupling of 3-Bromo-2,1-borazaronaphthalenes with Alkyl
Iodides. Org. Lett. 2014, 16, 3692. (b) Molander, G. A.; Traister, K.
M.; O’Neill, B. T. Reductive Cross-Coupling of Nonaromatic,
Heterocyclic Bromides with Aryl and Heteroaryl Bromides. J. Org.
Chem. 2014, 79, 5771. (c) Everson, D. A.; Buonomo, J. A.; Weix, D. J.
Nickel-catalyzed cross-electrophile coupling of 2-chloropyridines with
alkyl bromides. Synlett 2014, 25, 233.
(15) The use of amide solvents has become increasingly complex
because of concerns about reproductive toxicity and associated
increased regulation. For lead references and suggestions of less toxic
alternatives, see: (a) Ashcroft, C. P.; Dunn, P. J.; Hayler, J. D.; Wells,
A. S. Survey of Solvent Usage in Papers Published in Organic Process
Research & Development 1997−2012. Org. Process Res. Dev. 2015, 19,
740. (b) Lopez, J.; Pletscher, S.; Aemissegger, A.; Bucher, C.; Gallou,
F. N-Butylpyrrolidinone as Alternative Solvent for Solid-Phase
Peptide Synthesis. Org. Process Res. Dev. 2018, 22, 494. (c) Sherwood,
J.; Parker, H. L.; Moonen, K.; Farmer, T. J.; Hunt, A. J. N-
Butylpyrrolidinone as a dipolar aprotic solvent for organic synthesis.
Green Chem. 2016, 18, 3990.
(16) While the replacement of DMF, DMA, and NMP in cross-
coupling has been a priority for many years, no general replacements
have yet been reported. See: (a) Constable, D.; Dunn, P.; Hayler, J.;
Humphrey, G.; Leazer, J. L., Jr.; Linderman, R.; Lorenz, K.; Manley,
J.; Pearlman, B.; Wells, A.; Zaks, A.; Zhang, T. Key green chemistry
research areasA perspective from pharmaceutical manufacturers.
Green Chem. 2007, 9, 411. (b) Byrne, F. P.; Jin, S.; Paggiola, G.;
Petchey, T. H. M.; Clark, J. H.; Farmer, T. J.; Hunt, A. J.; McElroy, C.
R.; Sherwood, J. Tools and techniques for solvent selection: green
solvent selection guides. Sustainable Chem. Processes 2016, 4, 7.
(c) Koenig, S. G.; Leahy, D. K.; Wells, A. S. Evaluating the Impact of a
Decade of Funding from the Green Chemistry Institute Pharmaceut-
ical Roundtable. Org. Process Res. Dev. 2018, 22, 1344.
(5) (a) Hansen, E. C.; Pedro, D. J.; Wotal, A. C.; Gower, N. J.;
Nelson, J. D.; Caron, S.; Weix, D. J. New ligands for nickel catalysis
from diverse pharmaceutical heterocycle libraries. Nat. Chem. 2016, 8,
1126. (b) Hansen, E. C.; Li, C.; Yang, S.; Pedro, D.; Weix, D. J.
Coupling of Challenging Heteroaryl Halides with Alkyl Halides via
Nickel-Catalyzed Cross-Electrophile Coupling. J. Org. Chem. 2017,
82, 7085.
(6) Sheng, J.; Ni, H.-Q.; Zhang, H.-R.; Zhang, K.-F.; Wang, Y.-N.;
Wang, X.-S. Nickel-Catalyzed Reductive Cross-Coupling of Aryl
Halides with Monofluoroalkyl Halides for Late-Stage Monofluor-
oalkylation. Angew. Chem., Int. Ed. 2018, 57, 7634.
(17) With a few notable exceptions. See ref 4b and: Anka-Lufford, L.
L.; Huihui, K. M. M.; Gower, N. J.; Ackerman, L. K. G.; Weix, D. J.
Nickel-Catalyzed Cross-Electrophile Coupling with Organic Reduc-
tants in Non-Amide Solvents. Chem. - Eur. J. 2016, 22, 11564.
́
(18) (a) Durandetti, M.; Perichon, J. Nickel-Catalyzed Electro-
chemical Coupling of Aryl, Heteroaryl or Vinyl Halides with Activated
Alkyl Chlorides: Synthetic and Stereochemical Aspects. Synthesis
2004, 3079. (b) Perkins, R. J.; Pedro, D. J.; Hansen, E. C.
Electrochemical Nickel Catalysis for sp2−sp3 Cross-Electrophile
Coupling Reactions of Unactivated Alkyl Halides. Org. Lett. 2017,
19, 3755. (c) Li, H.; Breen, C. P.; Seo, H.; Jamison, T. F.; Fang, Y.-Q.;
Bio, M. M. Ni-Catalyzed Electrochemical Decarboxylative C−C
Couplings in Batch and Continuous Flow. Org. Lett. 2018, 20, 1338.
(d) Koyanagi, T.; Herath, A.; Chong, A.; Ratnikov, M.; Valiere, A.;
Chang, J.; Molteni, V.; Loren, J. One-Pot Electrochemical Nickel-
Catalyzed Decarboxylative sp2−sp3 Cross-Coupling. Org. Lett. 2019,
21, 816.
(19) Electrochemistry also has advantages in redox-neutral nickel-
catalyzed reactions. For example, see: Kawamata, Y.; Vantourout, J.
C.; Hickey, D. P.; Bai, P.; Chen, L.; Hou, Q.; Qiao, W.; Barman, K.;
Edwards, M. A.; Garrido-Castro, A. F.; deGruyter, J. N.; Nakamura,
H.; Knouse, K. W.; Qin, C.; Clay, K. J.; Bao, D.; Li, C.; Starr, J. T.;
Garcia-Irizarry, C.; Sach, N.; White, H. S.; Neurock, M.; Minteer, S.
D.; Baran, P. S. Electrochemically Driven, Ni-Catalyzed Aryl
Amination: Scope, Mechanism, and Applications. J. Am. Chem. Soc.
2019, 141, 6392 and references cited therein .
(20) (a) Chaussard, J.; Folest, J.-C.; Nedelec, J.-Y.; Perichon, J.;
Sibille, S.; Troupel, M. Use of Sacrificial Anodes in Electrochemical
Functionalization of Organic Halides. Synthesis 1990, 1990, 369.
(b) Moeller, K. D. Synthetic Applications of Anodic Electrochemistry.
Tetrahedron 2000, 56, 9527. (c) Budnikova, Y. Metal complex
catalysis in organic electrosynthesis. Russ. Chem. Rev. 2002, 71, 111.
(d) Yoshida, J.-i.; Kataoka, K.; Horcajada, R.; Nagaki, A. Modern
Strategies in Electroorganic Synthesis. Chem. Rev. 2008, 108, 2265.
(e) Francke, R.; Little, R. D. Redox catalysis in organic electrosyn-
thesis: basic principles and recent developments. Chem. Soc. Rev.
2014, 43, 2492. (f) Yan, M.; Kawamata, Y.; Baran, P. S. Synthetic
Organic Electrochemical Methods Since 2000: On the Verge of a
Renaissance. Chem. Rev. 2017, 117, 13230. (g) Waldvogel, S. R.; Lips,
S.; Selt, M.; Riehl, B.; Kampf, C. J. Electrochemical Arylation
Reaction. Chem. Rev. 2018, 118, 6706. (h) Wiebe, A.; Gieshoff, T.;
(7) Lu, X.; Yi, J.; Zhang, Z.-Q.; Dai, J.-J.; Liu, J.-H.; Xiao, B.; Fu, Y.;
Liu, L. Expedient Synthesis of Chiral α-Amino Acids through Nickel-
Catalyzed Reductive Cross-Coupling. Chem. - Eur. J. 2014, 20, 15339.
(8) (a) Kadunce, N. T.; Reisman, S. E. Nickel-Catalyzed
Asymmetric Reductive Cross-Coupling between Heteroaryl Iodides
and α-Chloronitriles. J. Am. Chem. Soc. 2015, 137, 10480. (b) Hofstra,
J. L.; Cherney, A. H.; Ordner, C. M.; Reisman, S. E. Synthesis of
Enantioenriched Allylic Silanes via Nickel-Catalyzed Reductive Cross-
Coupling. J. Am. Chem. Soc. 2018, 140, 139.
(9) Johnson, K. A.; Biswas, S.; Weix, D. J. Cross-Electrophile
Coupling of Vinyl Halides with Alkyl Halides. Chem. - Eur. J. 2016,
22, 7399.
(10) Wang, X.; Wang, S.; Xue, W.; Gong, H. Nickel-Catalyzed
Reductive Coupling of Aryl Bromides with Tertiary Alkyl Halides. J.
Am. Chem. Soc. 2015, 137, 11562.
(11) Ye, Y.; Chen, H.; Sessler, J. H.; Gong, H. Zn-Mediated
Fragmentation of Tertiary Alkyl Oxalates Enabling Formation of
Alkylated and Arylated Quaternary Carbon Centers. J. Am. Chem. Soc.
2019, 141, 820.
(12) Huihui, K. M. M.; Caputo, J. A.; Melchor, Z.; Olivares, A. M.;
Spiewak, A. M.; Johnson, K. A.; DiBenedetto, T. A.; Kim, S.;
Ackerman, L. K. G.; Weix, D. J. Decarboxylative Cross-Electrophile
Coupling of N-Hydroxyphthalimide Esters with Aryl Iodides. J. Am.
Chem. Soc. 2016, 138, 5016.
(13) (a) Yin, J.; Maguire, C. K.; Yasuda, N.; Brunskill, A. P. J.;
Klapars, A. Impact of Lead Impurities in Zinc Dust on the Selective
Reduction of a Dibromoimidazole Derivative. Org. Process Res. Dev.
2017, 21, 94. (b) Takai, K.; Kataoka, Y.; Miyai, J.; Okazoe, T.;
Oshima, K.; Utimoto, K. Alkylidenation of Ester Carbonyl Groups:
(Z)-1-Ethoxy-1-Phenyl-1-Hexene. Org. Synth. 1996, 73, 73. (c) Takai,
K.; Kakiuchi, T.; Utimoto, K. A Dramatic Effect of a Catalytic
Amount of Lead on the Simmons-Smith Reaction and Formation of
Alkylzinc Compounds from Iodoalkanes. Reactivity of Zinc Metal:
Activation and Deactivation. J. Org. Chem. 1994, 59, 2671.
(14) Acemoglu, M.; Krell, C. M.; Marterer, W. Experiences with
Negishi Couplings on Technical Scale in Early Development. In
E
Org. Process Res. Dev. XXXX, XXX, XXX−XXX