Published on Web 06/04/2005
A Highly Efficient Organocatalyst for Direct Aldol Reactions
of Ketones with Aldedydes
Zhuo Tang, Zhi-Hua Yang,† Xiao-Hua Chen, Lin-Feng Cun, Ai-Qiao Mi,
Yao-Zhong Jiang, and Liu-Zhu Gong*
Contribution from the Key Laboratory for Asymmetric Synthesis and Chirotechnology of Sichuan
ProVince, Chengdu Institute of Organic Chemistry, Chinese Academy of Sciences, Chengdu,
610041, China, and Graduate School of Chinese Academy of Sciences, Beijing, China
Received February 17, 2005; E-mail: gonglz@cioc.ac.cn
Abstract: L-Proline amides derived from various chiral â-amino alcohols that bear substituents with various
electron natures at their stereogenic centers are prepared and evaluated for catalyzing the direct Aldol
reaction of 4-nitrobenzaldehyde with acetone. Catalysts with strong electron-withdrawing groups are found
to exhibit higher catalytic activity and enantioselectivity than their analogues with electron-donating groups.
The presence of 2 mol % catalyst 4g significantly catalyzes the direct Aldol reactions of a wide range of
aldehydes with acetone and butanone, to give the â-hydroxy ketones with very high enantioselectivities
ranging from 96% to >99% ee. High diastereoselectivity of 95/5 was observed for the anti Aldol product
from the reaction of cyclohexanone, and excellent enantioselectivity of 93% ee was provided for anti Aldol
product from the reaction of cyclopentanone.
work by List and Barbas and their co-wokers.5c-e Since then,
L-proline6 and its structural analogues7-10 have been evaluated
Introduction
The Aldol reaction is considered one of the most important
carbon-carbon bond-forming reactions in organic synthesis. Its
great usefulness for building up natural products, in particular
those with polyoxygenated subunits,1 has promoted the rapid
evolution of efficient chiral catalysts.2 The direct Aldol reaction
is highly atom efficient,3 compared with well-established
processes using enol or enolate derivatives as the Aldol donor.2
Recently, the highly enantioselective direct Aldol reaction of
aldehydes with ketones in the presence of a catalytic amount
of bifunctional transition metal complexes has been reported.4
Although proline-catalyzed Robinson annulation appeared in the
early 1970s,5a,b the real breakthrough came from the pioneering
for use in asymmetric catalytic direct intermolecular Aldol
reactions. Although impressive results were observed for
R-branched aliphatic aldehydes, only fair enantioselectivities
were observed for the reactions of aromatic aldehydes with
acetone either by L-proline5c,d or its derivatives and structural
analogues,7,8 with the exception of an N-substituted proline
amide derived from (1S,2S)-1,2-diphenylaminoethanol9 and a
proline-derived N-sulfonylcarboxamine,10a which gave high
enantioselectivity for the para-substituted benzaldehydes. Thus
far, the organocatalysts that have been used for the direct Aldol
reaction of aldehydes with ketones are highly enantioselective
for a comparably narrow range of substrates. Nonetheless,
catalyst loading of as high as 20 or 30 mol % is usually required
† Visiting scholar from Sichuan University.
(1) Kim, B. M.; Williams, S. F.; Masamune, S. In ComprehensiVe Organic
Synthesis; Trost, B. M., Fleming, I., Heathcock, C. H., Eds.; Pergamon:
Oxford, 1991; Vol. 2, p 229.
(6) For reviews, see: (a) List, B. Tetrahedron 2002, 58, 5573. (b) List, B.
Synlett 2001, 1675. (c) Alcaide, B.; Almendros, P. Angew. Chem. Int. Ed.
2003, 42, 858. (d) List, B. Acc. Chem. Res. 2004, 37, 548. (e) Notz, W.;
Tanaka, F.; Barbas, C. F., III. Acc. Chem. Res. 2004, 37, 580. For leading
literatures, see: (f) Northrup, A. B.; MacMillan, D. W. C. J. Am. Chem.
Soc. 2002, 124, 6798. (g) Co´rdova, A.; Notz, W.; Barbas, C. F., III. J.
Org. Chem. 2002, 67, 301. (h) Bøgevig, A.; Kumaragurubaran, N.;
Jørgensen, K. A. Chem. Commun. 2002, 620. (i) Pidathala, C.; Hoang, L.;
Vignola, N.; List, B. Angew. Chem. Int. Ed. 2003, 42, 2785. (j) Northrup,
A. B.; Mangion, I. K.; Hettche, F.; MacMillan, D. W. C. Angew. Chem.
Int. Ed. 2004, 43, 2152. (l) Casas, J.; Engqvist, M.; Ibrahem, I.; Kaynak,
B.; Co´rdova, A. Angew. Chem. Int. Ed. 2005, 44, 1343.
(7) (a) Hartikaa, A.; Arvidsson, P. I. Tetrahedron: Asymmetry 2004, 15, 1831.
(b) Torii, H.; Nakadai, M.; Ishihara, K.; Saito, S.; Yamamoto, H. Angew.
Chem. Int. Ed. 2004, 43, 1983. For review, see: (c) Saito, S.; Yamamoto,
H. Acc. Chem. Res. 2004, 37, 570.
(8) (a) Martin, H. J.; List, B. Synlett, 2003, 1901. (b) Kofoed, J.; Nielsen, J.;
Reymond, J.-L. Bioorg. Med. Chem. Lett. 2003, 13, 2445.
(2) For reviews, see: (a) Gro¨ger, H.; Vogl, E. M.; Shibasaki, M. Chem. Eur.
J. 1998, 4, 1137. (b) Nelson, S. G. Tetrahedron: Asymmetry 1998, 9, 357.
(c) Carreira, E. M. In ComprehensiVe Asymmetric Catalysis; Jacobsen, E.
N., Pfaltz, A., Yamamoto, H., Eds.; Springer-Verlag: Heidelberg, 1999;
Vol. III, Chapter 29.1. (d) Mahrwald, R. Chem. ReV. 1999, 99, 1095. (e)
Machajewski, T. D.; Wong, C.-H. Angew. Chem. Int. Ed. 2000, 39, 1352.
(f) Johnson, J. S.; Evans, D. A. Acc. Chem. Res. 2000, 33, 325. (g) Denmark,
S. E.; Stavenger, R. A. Acc. Chem. Res. 2000, 33, 432. (h) Palomo, C.;
Oiarbide, M.; Garc´ıa, J. M. Chem. Soc. ReV. 2004, 33, 65.
(3) (a) Trost, B. M. Science 1991, 254, 1471. (b) Trost, B. M. Angew. Chem.
Int. Ed. Engl. 1995, 34, 259.
(4) (a) Yamada, Y. M. A.; Yoshikawa, N.; Sasai, H.; Shibasaki, M. Angew.
Chem. Int. Ed. 1997, 36, 1871. (b) Yoshikawa, N.; Yamada, Y. M. A.;
Sasai, H.; Shibasaki, M. J. Am. Chem. Soc. 1999, 121, 4168. (c) Trost, B.
M.; Ito, H. J. Am. Chem. Soc. 2000, 122, 12003. (d) Trost, B. M.; Ito, H.;
Siloff, E. R. J. Am. Chem. Soc. 2001, 123, 3367. (e) Evans, D. A.; Downey,
C. W.; Hubbs, J. L. J. Am. Chem. Soc. 2003, 125, 8706.
(9) (a) Tang, Z.; Jiang, F.; Yu, L.-T.; Cui, X.; Gong, L.-Z.; Mi, A.-Q.; Jiang,
Y.-Z.; Wu, Y.-D. J. Am. Chem. Soc. 2003, 125, 5262. (b) Tang, Z.; Jiang,
F.; Cui, X.; Gong, L.-Z.; Mi, A.-Q.; Jiang, Y.-Z.; Wu, Y.-D. Proc. Natl.
Acad. Sci. U.S.A. 2004, 101, 5755.
(10) (a) Berkessel, A.; Koch, B.; Lex, J. AdV. Synth. Catal. 2004, 346, 1141.
(b) Cobb, A. J. A.; Shaw, D. M.; Longbottom, D. A.; Gold, J. B.; Ley, S.
V. Org. Biomol. Chem. 2005, 3, 84.
(5) (a) Hojas, Z. G.; Parrish, D. R. J. Org. Chem. 1974, 39, 1615. (b) Eder,
U.; Sauer, R.; Wiechert, R. Angew. Chem. Int. Ed. Engl. 1971, 10, 496. (c)
List, B.; Lerner, R. A.; Barbas III, C. F. J. Am. Chem. Soc. 2000, 122,
2395. (d) Sakthivel, K.; Notz, W.; Bui, T.; Barbas C. F., III. J. Am. Chem.
Soc. 2001, 123, 5260. (e) Notz, W.; List, B. J. Am. Chem. Soc. 2000, 122,
7386.
9
10.1021/ja0510156 CCC: $30.25 © 2005 American Chemical Society
J. AM. CHEM. SOC. 2005, 127, 9285-9289
9285