´
M. Valık et al. / Tetrahedron: Asymmetry 16 (2005) 1969–1974
1973
examination and data collection were carried out on a j-
CCD device (NONIUS MACH3) with an Oxford Cryo-
systems cooling system at the window of a rotating an-
ode (NONIUS FR591) with graphite-monochromated
Compound 3b: Mp 208–212 ꢁC. EA for C31H32N4O4:
calcd C, 70.97; H, 6.15; N, 10.68. Found C, 70.16; H,
6.11; N, 10.64. MS (FAB) m/z: 525 (M+H)+.
20
D
½aꢂ ¼ þ192 (c 1.049, CH2Cl2). NMR spectra of 3b
˚
Mo Ka radiation (k = 0.71073 A). Data collection was
and 2a were identical as well as NMR spectra of 2b
and 3a.
performed at 123 K within the
h
range of
1.41ꢁ < h < 25.37ꢁ. A total of 29,297 reflections were
integrated. Raw data were corrected for Lorentz, and
polarization, and arising from the scaling procedure,
for latent decay and absorption effects. After merging
(Rint = 0.037), 4947 (4777 with Io > 2r(Io)) independent
reflections remained, and all were used to refine 481
parameters. The structure was solved by a combination
of direct methods and difference Fourier syntheses. All
nonhydrogen atoms were refined with anisotropic dis-
placement parameters. All hydrogen atoms were found
and refined with individual isotropic displacement
Acknowledgements
Grant by the Ministry of Education of the Czech
Republic MSM 6046137307, and grants 203/03/0900,
203/03/0716 from Grant Agency of the Czech Republic
and EU grant ÔCIDNAÕ NMP4-CT-2003-505669 sup-
ported the work. We also thank Dr D. Sy´kora, MS for
the help in preparation of the manuscript.
parameters. Full-matrix least-squares refinements were
carried out by minimizing
P
2
wðF 2o ꢀ F 2cÞ and con-
References
verged with R1 = 0.0274 (Io > 2r(Io)), wR2 = 0.0667
(all data), GOF = 1.032, and a shift/error of <0.001.
The final difference Fourier map shows no striking fea-
1. Tro¨ger, J. J. Prakt. Chem. 1887, 36, 225–245.
2. Bag, B. G. Curr. Sci. 1995, 68, 279–288.
3. Demeunynck, M.; Tatibouet, A. Recent Development in
Tro¨gerÕs Base Chemistry. In Progress in Heterocycles
Chemistry; Gribble, G. W., Cilchrist, T. L., Eds.; Perg-
amon: Oxford, UK, 1999, pp 1–20.
tures (Demin/max = +0.15/ꢀ0.12 e Aꢀ3). Small extinction
˚
effects were corrected with the SHELXL-97 procedure
[e = 0.016(1)]. The correct enantiomer is given by syn-
thesis. All calculations were performed on an Intel Pen-
tium II PC, with the STRUX-V system, including the
programs PLATON, SIR92, and SHELXL-97 (Ref. 24). Crys-
tallographic data (excluding structure factors) for the
structure reported in this paper have been deposited
with the Cambridge Crystallographic Data Centre as
supplementary publication no. CCDC-269349 2a. Cop-
ies of the data can be obtained free of charge on appli-
cation to the CCDC, 12 Union Road, Cambridge CB2
1EZ, UK. Fax (+44) 1223 336 033; e-mail
´
´
4. Valık, M.; Strongin, R. M.; Kral, V. Supramol. Chem., in
press.
5. Goswami, S.; Ghosh, K.; Dasgupta, S. J. Org. Chem.
2000, 65, 1907–1914.
6. Hansson, A. P.; Norrby, P.-O.; Warnmark, K. Tetrahe-
dron Lett. 1998, 39, 4565–4568.
7. (a) Crossley, M. J.; Mackay, L. G.; Try, A. C. J. Chem.
Soc., Chem. Commun. 1995, 1925–1927; (b) Allen, P. R.;
Reek, J. N. H.; Try, A. C.; Crossley, M. J. Tetrahedron:
Asymmetry 1997, 8, 1161–1164.
8. Webb, T. H.; Suh, H.; Wilcox, C. S. J. Am. Chem. Soc.
1991, 113, 8554–8555.
9. Wilcox, C. S.; Adrian, J. C.; Webb, T. H.; Zawacki, F. J.
J. Am. Chem. Soc. 1992, 114, 10189–10197.
10. Bailly, C.; Laine, W.; Demeunynck, M.; Lhomme, J.
Biochem. Biophys. Res. Commun. 2000, 273, 681–
685.
11. Baldeyrou, B.; Tardy, C.; Bailly, C.; Colson, P.; Houssier,
C.; Charmantray, F.; Demeunynck, M. Eur. J. Med.
Chem. 2002, 37, 315–322.
12. Johnson, R. A.; Gorman, R. R.; Wnuk, R. J.; Crittenden,
N. J.; Aiken, J. W. J. Med. Chem. 1993, 36, 3202–
3206.
13. Maitra, U.; Bag, B. G. J. Org. Chem. 1992, 57, 6979–
6981.
Compound 3a: 1H NMR (CDCl3): d 1.59 (6H, d,
J = 6.6 Hz, CHCH3); 3.62 (6H, s, NCH3); 3.92 (2H, d,
J = 16.2 Hz, endo CHHN); 4.09 (2H, s, NCH2N); 4.36
(2H, d, J = 16.0 Hz, exo CHHN); 5.97 (2H, q,
J = 6.6 Hz, CHCH3); 6.77 (2H, s, CHCN); 7.22–7.42
(10H, m, CH–Ph). 13C NMR (CDCl3): d 22.48
(CHCH3), 32.59 (NCH3), 52.18 (CCH2N), 68.96
(NCH2N), 71.59 (CHCH3), 110.10 (CHCN), 120.13
(CCO), 125.90 (o-CH of Ph), 126.97 (CCH2N), 127.64
(p-CH of Ph), 128.43 (m-CH of Ph), 131.14 (CNCH2),
142.14 (ipso-C of Ph), 160.42 (CO).
14. Maitra, U.; Bag, B. G.; Rao, P.; Powell, D. J. Chem. Soc.,
Perkin Trans. 1 1995, 2049–2056.
15. Prelog, V.; Wieland, P. Helv. Chim. Acta 1944, 27, 1127–
1134.
4.6. Preparation bis(1-phenylethyl)-4,9-methano-1,6-
dimethyl-4,5,9,10-tetrahydro-1H,6H- dipyrrolo-[3,2-
b:30,20-f][1,5]diazocin-2,7-dicarboxylate 2b/3b
16. Hamada, Y.; Mukai, S. Tetrahedron: Asymmetry 1996, 7,
2671–2674.
17. Tatibouet, A.; Demeunynck, M.; Andraud, C.; Collet, A.;
Lhomme, J. Chem. Commun. 1999, 161–162.
Compound 3b was obtained from 6b (4.70 g,
16.8 mmol), concd HCl (9 mL) and aqueous formalde-
hyde (9 mL) under similar conditions as 2a. Unlike 2a,
the crude product was treated with dichloromethane
(1 mL), methanol (30 mL), and concd aqueous HCl
(three drops) to give crude 3b (2.80 g), which gave with
the next crystallization (dichloromethane/methanol)
pure 3b (2.31 g, de >99%, 53% yield). Diastereoisomer-
ization of 3b in methanol with HCl gave a 1:1 mixture
of 2b and 3b.
´
18. Talas, E.; Margitfalvi, J.; Machytka, D.; Czugler, M.
Tetrahedron: Asymmetry 1998, 9, 4151–4156.
19. Wilen, S. H.; Qi, J. Z.; Williard, P. G. J. Org. Chem. 1991,
56, 485–487.
20. Nishiwaki, E.; Tanaka, S.; Lee, H.; Shibuya, M. Hetero-
cycles 1988, 27, 1945–1952.
21. Seltzman, H. H.; Berrang, B. D. Tetrahedron Lett. 1993,
34, 3083–3086.