intermolecular reaction of two or three different alkynes with
high selectivity.9 We anticipated that cross-cyclotrimerization
of two molecules of symmetrical internal alkynes and one
molecule of unsymmetrical internal alkynes, bearing ortho-
substituted phenyl at one terminal position, would construct
axial chirality during the formation of benzene rings (eq 1).
We recently reported a cationic rhodium(I)/H8-BINAP10
complex-catalyzed complete intermolecular cross cyclotri-
merization of terminal alkynes with dialkyl acetylenedicar-
boxylates.11,12 In this paper, we describe a cross-cyclo-
trimerization using internal alkynes and its application to the
enantioselective synthesis of axially chiral biaryls.
Table 1. Rhodium-Catalyzed Cross-Cyclotrimerization of
Internal Alkynes and Diethyl Acetylenedicarboxylate
entry
2
R1
n-Pr
(CH2)4CH3
Ph
Me
Ph
R2
n-Pr
Me
Me
CO2Et
CO2Et
CH2OMe
CH2OAc
3
yielda (%)
1
2
3
4
5
6
7
2a
2b
2c
2d
2e
2f
3aa
3ba
3ca
3da
3ea
3fa
76
69
68
82
72
82
0
CH2OMe
CH2OAc
2g
3ga
a Isolated yield.
We first investigated an intermolecular cross-cyclo-
trimerization of two different internal alkynes. Screening of
various alkynes and Rh(I) complexes revealed that Rh(I)+/
H8-BINAP catalyzed chemoselective intermolecular cross-
cyclotrimerization of two molecules of diethyl acetylenedi-
carboxylate (1a) and one molecule of internal alkynes (Table
1). Alkyl- (entries 1 and 2), aryl- (entry 3), and alkoxycar-
bonyl-substituted (entries 4 and 5) internal alkynes were
suitable substrates for this reaction. Interestingly, although
the reaction of 1,4-dimethoxy-2-butyne (2f) proceeded in
high yield (entry 6), no reaction was observed in the case of
1,4-diacetoxy-2-butyne (2g) (entry 7).
Next, the reaction of various 2-methylphenyl-substituted
internal alkynes 2h,i with dimethyl acetylenedicarboxylate
(1b) was investigated to construct axial chirality (Table 2).
Table 2. Optimization of Rhodium-Catalyzed Enantioselective
Cross-Cyclotrimerization
(4) Utilizing planar chiral arene chromium complex: (a) Watanabe, T.;
Tanaka, Y.; Shoda, R.; Sakamoto, R.; Kamikawa, K.; Uemura, M. J. Org.
Chem. 2004, 69, 4152-4158. (b) Kamikawa, K.; Sakamoto, T.; Tanaka,
Y.; Uemura, M. J. Org. Chem. 2003, 68, 9356-9363 and references therein.
(5) Chirality exchange from sp3 central chirality to axial chirality: Nishii,
Y.; Wakasugi, K.; Koga, K.; Tanabe, Y. J. Am. Chem. Soc. 2004, 126,
5358-5359.
(6) Gutnov, A.; Heller, B.; Fischer, C.; Drexler, H.-J.; Spannenberg, A.;
Sundermann, B.; Sundermann, C. Angew. Chem., Int. Ed. 2004, 43, 3795-
3797.
entry
2
R
ligand
3
yielda (%) ee (%)
(7) (a) Shibata, T.; Fujimoto, T.; Yokota, K.; Takagi, K. J. Am. Chem.
Soc. 2004, 126, 8382-8383. (b) Tanaka, K.; Nishida. G.; Wada, A.;
Noguchi, K. Angew. Chem., Int. Ed. 2004, 43, 6510-6512.
(8) Asymmetric cyclotrimerization of alkynes: (a) Sato, Y.; Nishimata,
T.; Mori, M. Heterocycles 1997, 44, 443-457. (b) Sato, Y.; Nishimata, T.;
Mori, M. J. Org. Chem. 1994, 59, 6133-6135. (c) Stara, I. G.; Stary, I.;
Kollarovic, A.; Teply, F.; Vyskocil, S.; Saman, D. Tetrahedron Lett. 1999,
40, 1993-1996.
1
2
3
4
5
2h
H
(S)-H8-BINAP (-)-3hb
23
<5
81
21
2i OMe (S)-H8-BINAP 3ib
2j OAc (S)-H8-BINAP (+)-3jb
2j OAc (R)-BINAP
2j OAc (S)-Segphos
89
77
(-)-3jb
3jb
16
<5
(9) For reviews, see: (a) Saito, S.; Yamamoto, Y. Chem. ReV. 2000,
100, 2901-2915. (b) Lautens, M.; Klute, W.; Tam, W. Chem. ReV. 1996,
96, 49-92. Catalytic complete intermolecular cross cyclotrimerization of
alkynes. For Ni, see: (c) Mori, N.; Ikeda, S.-I.; Odashima, K. Chem.
Commun. 2001, 181-182. (d) Sato, Y.; Ohashi, K.; Mori, M. Tetrahedron
Lett. 1999, 40, 5231-5234. For Pd, see: (e) Dieck, H. T.; Munz, C.; Mu¨ller,
C. J. Organomet. Chem. 1990, 384, 243-255. For Ir, see: (f) Takeuchi,
R.; Nakaya, Y. Org. Lett. 2003, 5, 3659-3662. For Rh, see: (g) Abdulla,
K.; Booth, B. L.; Stacey, C. J. Organomet. Chem. 1985, 293, 103-114.
For Ru, see: (h) Yamamoto, Y.; Ishii, J.; Nishiyama, H.; Itoh, K. J. Am.
Chem. Soc. 2004, 126, 3712-3713. For Co, see: (i) Chouraqui, G.; Petit,
M.; Aubert, C.; Malacria, M. Org. Lett. 2004, 6, 1519-1521.
(10) Zhang, X.; Mashimo, K.; Koyano, K.; Sayo, N.; Kumobayashi, H.;
Akutagawa, S.; Takaya, H. Tetrahedron Lett. 1991, 32, 7283-7286.
(11) (a) Tanaka, K.; Toyoda, K.; Wada, A.; Shirasaka, K.; Hirano, M.
Chem. Eur. J. 2005, 11, 1145-1156. (b) Tanaka, K.; Shirasaka, K. Org.
Lett. 2003, 5, 4697-4699.
a Isolated yield.
In the case of methyl- and methoxymethyl-substituted
alkynes 2h and 2i, cyclotrimerization of 1b proceeded rapidly
(entries 1 and 2). On the other hand, the use of an
acetoxymethyl-substituted alkyne 2j furnished an axially
chiral biaryl in high yield with high enantioselectivity (entry
3). The use of BINAP or Segphos13 led to poor results
(entries 4 and 5) (Figure 1).
The enantioselective intermolecular cross-cyclotrimeriza-
tion of various acyloxymethyl-substituted alkynes 2j-o and
(12) For pioneering work of the rhodium-catalyzed partial intramolecular
cross cyclotrimerization of alkynes, see: Grigg, R.; Scott, R.; Stevenson,
P. J. Chem. Soc., Perkin Trans. 1 1988, 1357-1364.
(13) Saito, T.; Yokozawa, T.; Ishizaki, T.; Moroi, T.; Sayo, N.; Miura,
T.; Kumobayashi, H. AdV. Synth. Catal. 2001, 343, 264-267.
3120
Org. Lett., Vol. 7, No. 14, 2005