Scheme 1
Table 1.
concna temp time yield
X (M)
(°C) (h) (%)b
entry
metal
ligand
halide
c
1
2
3
4
5
6
7
8
9
Pd[PPh3]4 PR3
(()-2a Br 0.10
150
100
50
8
8
nd
nd
nd
16
nd
65
45
nd
64
55
69
58
CuSO4
Cul
1,10-phend (()-2a Br 0.10
1,10-phen (()-2a Br 0.10
12
8
Cul
1,10-phen (()-2b
1,10-phen (()-2b
DMEDAd (()-2b
I
I
I
I
I
I
I
I
I
0.15
0.10
0.15
0.15
0.15
0.15
0.15
50
Cul
110
50
4
Cul
4
CuSO4
CuSO4
CuCN
DMEDA
(()-2b
50
4
1,10-phen (()-2b
DMEDA (()-2b
50
18
4
50
of this amidative process using catalytic copper salts. Our
efforts have been focused on the stereoselectivity issue. We
report here a copper-catalyzed stereospecific N-allenylation
of amides.
Our work commenced prior to our knowledge of Trost’s
recent report,12 and thus, given lack of precedents at the time,
we first carefully screened various metal catalysts mainly
with palladium and copper and various ligands mostly with
phosphines, 1,10-phenanthroline, and N,N-dimethylethyl-
enediamine [DMEDA]. These results are summarized in
Table 1 specifically using Evans’ chiral oxazolidinone 1 and
10 CuCN
11 CuCN
12 CuCN
1,10-phen (()-2b
50
4
DMEDA
DMEDA
(()-2b
(()-2b
0.075 50
0.075 rt
18
18
a Concentration of 2. b Isolated yields; nd: not determined. c R ) o-tolyl
or c-hex. d 1,10-Phen: 1,10-phenanthroline. DMEDA: N,N′-dimethyleth-
ylenediamine
racemic allenyl halides 2a/b. In general, allenyl iodide 2b
[entries 4-12] worked much better than bromide 2a [entries
(14) For syntheses of allenamides, see: (a) Xiong, H.; Tracey, M. R.;
Grebe, T. P.; Mulder, J. A.; Hsung, R. P.; Wipf, P.; Smotryski, J. Org.
Synth. 2004, 81, 147. (b) Tracey, M. R.; Grebe, T. P.; Brennessel, W. W.;
Hsung, R. P. Acta Crystallogr. 2004, C60, o830. (c) Huang, J.; Xiong, H.;
Hsung, R. P.; Rameshkumar, C.; Mulder, J. A.; Grebe, T. P. Org. Lett.
2002, 4, 2417. (d) Wei, L.-L.; Mulder, J. A.; Xiong, H.; Zificsak, C. A.;
Douglas, C. J.; Hsung, R. P. Tetrahedron 2001, 57, 459. (e) Wei, L.-L.;
Hsung, R. P.; Xiong, H.; Mulder, J. A.; Nkansah, N. T. Org. Lett. 1999, 1,
2145. (f) Wei, L.-L.; Xiong, H.; Douglas, C. J.; Hsung, R. P. Tetrahedron
Lett. 1999, 40, 6903. For some earlier syntheses of allenamides, see: (g)
Dickinson, W. B.; Lang, P. C. Tetrahedron Lett. 1967, 8, 3035. (h)
Bogentoft, C.; Ericsson, O¨ .; Stenberg, P.; Danielsson, B. Tetrahedron Lett.
1969, 10, 4745. (i) Wulff, J.; Huisgen, R. Chem. Ber. 1969, 102, 1841. (j)
Bayer, H. O.; Huisgen, R.; Knorr, R.; Schaefer, F. C. Chem. Ber. 1970,
103, 2581. (k) Balasubramanian, K. K.; Venugopalan, B. Tetrahedron Lett.
1974, 15, 2643. (l) Corbel, B.; Paugam, J.-P.; Dreux, M.; Savignac, P.
Tetrahedron Lett. 1976, 17, 835. (m) Overman, L. E.; Marlowe, C. K.;
Clizbe, L. A. Tetrahedron Lett. 1979, 20, 599. (n) Padwa, A.; Caruso, T.;
Nahm, S.; Rodriguez, A. J. Am. Chem. Soc. 1982, 104, 2865. (o) Padwa,
A.; Cohen, L. A. J. Org. Chem. 1984, 49, 399.
(15) Xiong, H.; Hsung, R. P.; Wei, L.-L.; Berry, C. R.; Mulder, J. A.;
Stockwell, B. Org. Lett. 2000, 2, 2869.
(16) For recent allenamide chemistry, see: (a) An˜orbe, L.; Poblador,
A.; Dom´ınguez, G.; Pe´rez-Castells, J. Tetrahedron Lett. 2004, 45, 4441.
(b) Achmatowicz, M.; Hegedus, L. S. J. Org. Chem. 2004, 69, 2229. (c)
Ranslow, P. D. B.; Hegedus, L. S.; de los Rios, C. J. Org. Chem. 2004, 69,
105. (d) Feng, L.; Kumar, D.; Birney, D. M.; Kerwin, S. M. Org. Lett.
2004, 6, 2059. (e) Bacci, J. P.; Greenman, K. L.; Van Vranken, D. L. J.
Org. Chem. 2003, 68, 4955. (f) Armstrong, A.; Cooke, R. S.; Shanahan, S.
E. Org. Biomol. Chem. 2003, 1, 3142. (g) Gaul C.; Seebach, D. HelV. Chim.
Acta 2002, 85, 963. (h) Kozawa, Y.; Mori, M. Tetrahedron Lett. 2002, 43,
1499. (i) Le Strat, F.; Maddaluno, J. Org. Lett. 2002, 4, 2791.
(17) For our recent efforts, see: (a) Berry, C. R.; Hsung, R. P. Antoline,
J. E.; Petersen, M. E.; Rameshkumar, C.; Nielson, J. A. J. Org. Chem.
2005, 70, 4038. (b) Shen, L.; Hsung, R. P. Org. Lett. 2005, 7, 775. (c)
Huang, J.; Hsung, R. P. J. Am. Chem. Soc. 2005, 127, 50. (d) Rameshkumar,
C.; Hsung, R. P. Angew. Chem., Int. Ed. 2004, 43, 615. (e) Berry, C. R.;
Hsung, R. P. Tetrahedron 2004, 60, 7629. (f) Xiong, H.; Huang, J.; Ghosh,
S.; Hsung, R. P. J. Am. Chem. Soc. 2003, 125, 12694. (g) Rameshkumar,
C.; Hsung, R. P. Synlett 2003, 1241. (h) Berry, C. R.; Rameshkumar, C.;
Tracey, M. R.; Wei, L.-L.; Hsung, R. P. Synlett 2003, 791. (i) Rameshkumar,
C.; Xiong, H.; Tracey, M. R.; Berry, C. R.; Yao, L. J.; Hsung, R. P. J.
Org. Chem. 2002, 67, 1339. (j) Xiong, H.; Hsung. R. P.; Berry, C. R.;
Rameshkumar, C. J. Am. Chem. Soc. 2001, 123, 7174.
Figure 1. Generality of the amidative cross-coupling. aUnless
otherwise indicated, all reactions were run in toluene at 50 °C using
b
10 mol% CuCN, 20 mol% DMEDA, and 2 equiv of Cs2CO3 . -
c
d
e
Isolated yields. Reaction was run at rt. Yield: 69% at 50 °C. -
Performed with 10 mol% CuTC [Cu(I) thiophenecarboxylate].
fYield: 39% using CuCN.
3082
Org. Lett., Vol. 7, No. 14, 2005