Communications
(5.7), 614 [M+ꢀtBu] (8.4), 382 [M+ꢀCp’’’Fe], (27.8). Fifth fraction:
structures were solved by direct methods with the program
SHELXS-97,[30a] and full matrix least-squares refinement on F2
in SHELXL-97[30b] was performed with anisotropic displace-
ments for non-hydrogen atoms. Hydrogen atoms were located in
idealized positions and refined isotropically according to the
riding model. In compound 4 the C atoms of all CH3 groups are
disordered; a merohedral twin could not be ruled out. 3:
C22H38FeP4, Mr = 482.25, crystal dimensions 0.30 ꢁ 0.15 ꢁ
0.05 mm3, monoclinic, space group P21/n (No. 14), a = 8.679(1),
b = 15.985(1) ꢀ, c = 35.579(2) ꢀ, b = 96.14(1)8, T= 150(1) K,
31
1
P NMR (250 MHz, C6D6): d = 92 ppm, w = = 300 Hz.
2
All theoretical calculations were performed using the TURBO-
MOLE program package.[23] We employ the triple zeta plus polar-
ization (TZVP) basis set on all atoms.[24] We considered BP86[25] and
B3LYP[26] exchange-correlation functionals. Comparison of structural
parameters calculated for 6 using both functionals (see Table 1 for
BP86 and the Supporting Information for B3LYP results) shows that
the BP86 provides
a more reliable description. To speed up
calculations with BP86 functional the Coulomb part was evaluated
using the MARI-J method.[27] To confirm that a calculated structure
and density are not the result of symmetry restrictions, the calcu-
lations are performed both by using symmetry and without symmetry.
The most stable spin states have been found employing the pseudo
Fermi smearing technique.[28] All nuclear coordinates have been fully
optimized. Convergence criteria were set to 10ꢀ3 a.u. for the norm of
the gradients and 10ꢀ5 a.u. for energy change. The AIM analysis was
performed with the AIMPAC program.[29]
Z = 8, V= 4907.7(6) ꢀ3, 1calcd = 1.305 Mgmꢀ3
0.881 mmꢀ1, 9640 independent reflexes (Rint = 0.0549, 2qmax
,
m(MoKa) =
=
53.188), 6244 observed with Fo = 4s(Fo), 511 parameters, R1 =
0.0400, wR2 = 0.0971. 4: C27H45FeP3, Mr = 518.39, crystal dimen-
sions 0.30 ꢁ 0.20 ꢁ 0.05 mm3, orthorhombic, space group Pnma
(No. 62), a = 16.361(3) b = 16.933(3) ꢀ, c = 10.102(2) ꢀ, T=
203(2) K, Z = 4, V= 2798.7(10) ꢀ3, 1calcd = 1.230 Mgmꢀ3
, m-
(MoKa) = 0.378 mmꢀ1, 2963 independent reflexes (Rint = 0.0988,
2qmax = 41.728), 2387 observed with Fo = 4s(Fo), 226 parameters,
R1 = 0.0704, wR2 = 0.1913. 6: C34H58Fe2P3, Mr = 671.41, crystal
dimensions 0.16 ꢁ 0.10 ꢁ 0.02 mm3, monoclinic, space group C2/c
(No. 15); a = 10.207(2), b = 15.635(3), c = 22.210(4) ꢀ, b =
Received: January 18, 2005
Published online: May 11, 2005
94.63(3)8, T= 100(1) K, Z = 4, V= 3532.8(12) ꢀ3, 1calcd
=
Keywords: density functional calculations · iron · metallocenes ·
1.262 Mgmꢀ3, m(AgKa) = 0.978 mmꢀ1, 3174 independent reflexes
(Rint = 0.0591, 2qmax = 50.728), 2247 observed with Fo = 4s(Fo);
186 parameters, R1 = 0.0448, wR2 = 0.1039. CCDC-258064 (3),
CCDC-258065 (4), and CCDC-258066 (6) contain the supple-
mentary crystallographic data for this paper. These data can be
obtained free of charge from the Cambridge Crystallographic
[17] O. J. Scherer, T. Brꢂck, G. Wolmershꢃuser, Chem. Ber. 1988, 121,
935.
.
phosphorus · polyphosphorus ligands
[1] E. Urnezius, W. W. Brennessel, C. J. Cramer, J. E. Ellis, P. v. R.
Schleyer, Science 2002, 295, 832.
[2] J. Frunzke, M. Lein, G. Frenking, Organometallics 2002, 21, 3351.
[3] F. Mathey in Phosphorus-Carbon Heterocyclic Chemistry: The
Rise of a New Domain (Ed.: F. Mathey), Pergamon, Oxford,
2001, pp. 767; Homogeneous Catalysis with Organometallic
Compounds, Vol. 1 and 2 (Eds.: B. Cornils, W. A. Herrmann),
VCH, Weinheim, 1996; K. B. Dillon, F. Mathey, J. F. Nixon in
Phosphorus: The Carbon Copy, Wiley, New York, 1998; F.
Mathey, Angew. Chem. 2003, 115, 1616 – 1643; Angew. Chem.
Int. Ed. 2003, 42, 1578 – 1604.
[18] O. J. Scherer, Acc. Chem. Res. 1999, 32, 751 – 762; K. H.
Whitmire, Adv. Organomet. Chem. 1998, 42, 1 – 145.
[19] A. Barth, G. Huttner, M. Fritz, L. Zsolnai, Angew. Chem. 1990,
102, 956 – 958; Angew. Chem. Int. Ed. Engl. 1990, 29, 929 – 931.
[20] M. Scheer, K. Schuster, U. Becker, A. Krug, H. Hartung, J.
Organomet. Chem. 1993, 460, 105 – 110.
[21] M. Lein, J. Frunzke, G. Frenking, Inorg. Chem. 2003, 42, 2504 –
2511.
[22] R. F. W. Bader, Chem. Rev. 1991, 91, 893 – 928.
[23] a) R. Ahlrichs, M. Bꢃr, M. Hꢃser, H. Horn, C. Kꢄlmel, Chem.
Phys. Lett. 1989, 162, 165 – 169; b) O. Treutler, R. Ahlrichs, J.
Chem. Phys. 1995, 102, 346 – 354.
[24] a) A. Schꢃfer, H. Horn, R. Ahlrichs, J. Chem. Phys. 1992, 97,
2571 – 2577; b) A. Schꢃfer, C. Huber, R. Ahlrichs, J. Chem. Phys.
1994, 100, 5829 – 5835; c) K. Eichkorn, F. Weigend, O. Treutler,
R. Ahlrichs, Theor. Chem. Acc. 1997, 97, 119 – 124.
[25] a) A. D. Becke, Phys. Rev. A 1988, 38, 3098 – 3100; b) S. H.
Vosko, L. Wilk, M. Nusair, Can. J. Phys. 1980, 58, 1200 – 1211;
c) J. P. Perdew, Phys. Rev. B 1986, 33, 8822 – 8824; Erratum: J. P.
Perdew, Phys. Rev. B 1986, 34, 7406.
[26] a) A. D. Becke, J. Chem. Phys. 1993, 98, 5648 – 5652; b) C. Lee,
W. Yang, R. G. Parr, Phys. Rev. B 1988, 37, 785 – 789.
[27] a) K. Eichkorn, O. Treutler, H. ꢅhm, M. Hꢃser, R. Ahlrichs,
Chem. Phys. Lett. 1995, 242, 652; b) M. Sierka, A. Hogekamp, R.
Ahlrichs, J. Chem. Phys. 2003, 118, 9136 – 9148.
[4] F. Mathey, Tetrahedron Lett. 1976, 4155 – 4158.
[5] O. J. Scherer, T. Brꢂck, Angew. Chem. 1987, 99, 59; Angew.
Chem. Int. Ed. Engl. 1987, 26, 59.
[6] F. Mathey, Coord. Chem. Rev. 1994, 137, 1 – 52.
[7] N. Maigrot, N. Avarvari, C. Charrier, F. Mathey, Angew. Chem.
1995, 107, 623 – 625; Angew. Chem. Int. Ed. Engl. 1995, 34, 590 –
592.
[8] a) C. Mꢂller, R. Bartsch, A. Fischer, P. G. Jones, R. Schmutzler,
J. Organomet. Chem. 1996, 512, 141 – 148; b) R. Bartsch, P. B.
Hitchcock, J. F. Nixon, J. Organomet. Chem. 1988, 340, C37 –
C39; c) R. Bartsch, P. B. Hichcock, J. F. Nixon, J. Chem. Soc.
Chem. Commun. 1987, 1146 – 1148; d) C. Mꢂller, R. Bartsch, A.
Fischer, P. G. Jones, J. Organomet. Chem. 1993, 453, C16 – C18.
[9] O. J. Scherer, T. Hilt, G. Wolmershꢃuser, Angew. Chem. 2000,
112, 1484 – 1485; Angew. Chem. Int. Ed. 2000, 39, 1425 – 1427.
[10] B. Junfeng, A. Virovets, M. Scheer, Science 2003, 300, 781 – 782.
[11] B. Junfeng, A. Virovets, M. Scheer, Angew. Chem. 2002, 114,
1808 – 1811; Angew. Chem. Int. Ed. 2002, 41, 1737 – 1740.
[12] O. J. Scherer, T. Hilt, G. Wolmershꢃuser, Organometallics 1998,
17, 4110 – 4112.
[28] P. Nava, M. Sierka, R. Ahlrichs, Phys. Chem. Chem. Phys. 2003,
5, 3372 – 3381.
[13] S. Deng, Diplom thesis, Karlsruhe 2002.
[14] For P3/P1 fragmentation of P4 phosphorus see M. Scheer, K.
Schuster, U. Becker, Phosphorus Sulfur and Silicon 1996, 109–
110, 114 – 141; M. Scheer, U. Becker, Chem. Ber. 1996, 129,
1307 – 1310; M. Scheer, U. Becker, J. Magull, Polyhedron 1998,
17, 1983 – 1989.
[29] F. W. Biegler-Kꢄnig, R. F. W. Bader, T. H. Tang, J. Comput.
Chem. 1982, 3, 317 – 328.
[30] a) G. M. Sheldrick, SHELXS-96, Universitꢃt Gꢄttingen, 1996;
b) G. M. Sheldrick, SHELXL-97, Universitꢃt Gꢄttingen, 1997.
[15] C. Eichhorn, PhD thesis, Kaiserslautern, 2003.
[16] Crystal structure analyses of 3, 4 and 6 were performed on a
STOE IPDS diffractometer with MoKa radiation (l = 0.71073 ꢀ)
for 3 and 6 and AgKa radiation (l = 0.56087 ꢀ) for 4. The
3758
ꢀ 2005 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
Angew. Chem. Int. Ed. 2005, 44, 3755 –3758