Heteroditopic Imino-N-heterocyclic Carbenes
FULL PAPER
Chem. 2002, 114, 1343; Angew. Chem. Int. Ed. 2002, 41, 1290;
c) W. A. Herrmann, T. Weskamp, V. P. W. Böhm, Adv. Or-
ganomet. Chem. 2001, 48, 1; d) C. J. Carmalt, A. H. Cowley,
Adv. Inorg. Chem. 2000, 50, 1; e) D. Bourissou, O. Guerret,
F. P. Gabbai, G. Bertrand, Chem. Rev. 2000, 100, 39; f) A. J.
Arduengo, Acc. Chem. Res. 1999, 32, 913; g) W. A. Herrmann,
C. Köcher, Angew. Chem. 1997, 109, 2257; Angew. Chem. Int.
Ed. Engl. 1997, 36, 2163.
a) T. Weskamp, F. J. Kohl, W. A. Herrmann, J. Organomet.
Chem. 1999, 582, 362; b) T. Weskamp, W. C. Schattenmann,
M. Spiegler, W. A. Herrmann, Angew. Chem. 1998, 110, 2631;
Angew. Chem. Int. Ed. 1998, 37, 2490; c) C. W. Bielawski, R. H.
Grubbs, Angew. Chem. 2000, 112, 3025; Angew. Chem. Int. Ed.
2000, 39, 2903; d) Review: M. R. Buchmeiser, Well-Defined
Transition Metal Catalysts for Metathesis Polymerization, in,
Late Transition Metal Polymerization Catalysis (Eds.: B. Ri-
eger, L. S. Baugh, S. Kacker, S. Striegler), Wiley-VCH,
Weinheim, 2003, chapter 5, p. 155.
the mixture and the reaction was stirred overnight at room tem-
perature followed by irradiation at 0 °C with a 150 W high pressure
mercury lamp for the period of 3 h. Chromatography on alumina
with diethyl ether/n-hexane (v/v, 1:1) and methanol as eluents af-
forded air-stable, yellow 13 (253 mg, 0.422 mmol, 25%). M.p.
169 °C. MS (FAB): m/z = 600.9 [M]+. IR (KBr): ν = 3206 cm–1 (w),
˜
3057(w), 1990(vs), 1865 (vs), 1854 (vs), 1819 (vs), 1576 (m), 1466
(m), 1440 (s), 1390 (m), 1360 (s), 1287 (m), 1216 (s), 1125 (m), 1077
(m), 990 (m), 719 (s), 704 (s), 694 (s), 683 (s). 1H NMR [300 MHz,
(CD3)2SO]: δ = 1.80 (s, 6 H, CH3), 3.84 (s, 3 H, CH3), 6.69–7.19
[2]
3
3
(m, 10 H, C6H5), 7.54 (d, J = 1.6 Hz, 1 H, C3H2N2), 7.67 (d, J
= 1.6 Hz, 1 H, C3H2N2) ppm. 13C NMR [75.432 MHz, (CD3)2SO]:
δ = 27.6 and 64.4 [C(CH3)2], 119.6, 121.2, 122.7, 124.3, 127.1,
127.4, 127.7, 128.1, 136.1, and 155.5 (C6H5, C3H2N2), 184.2
(C=N), 192.4 (1JC,W = 95 Hz, carbene C), 205.3 [1JC,W = 129 Hz,
W(CO)axial], 210.1 [1JC,W = 146 Hz, W(CO)equatorial], 218.2 [1JC,W
=
169 Hz, W(CO)equatorial]
ppm. 183W NMR [12.483 MHz,
[3]
[4]
a) D. S. McGuiness, V. C. Gibson, D. F. Wass, J. W. Steed, J.
Am. Chem. Soc. 2003, 125, 12 716; b) M. Tilset, O. Andell, A.
Dhindsa, M. Froseth (Borealis Technology Oy, Finland), WO
2002049758; Chem. Abstr. 2002, 137, 63615.
(CD3)2SO, vs. saturated aqueous Na2WO4]: δ = –2569 [W(CO)4]
ppm. C24H21N3O4W (599.28): calcd. C 48.10, H 3.53, N 7.01;
found C 47.97, H 3.52, N 6.97.
Recent reviews: a) Late Transition Metal Polymerization Catal-
ysis (Eds.: B. Rieger, L. S. Baugh, S. Kacker, S. Striegler),
Wiley-VCH, Weinheim, 2003; b) V. C. Gibson, S. K. Spitz-
messer, Chem. Rev. 2003, 103, 283; c) S. Mecking, Angew.
Chem. 2001, 113, 550; Angew. Chem. Int. Ed. 2001, 40, 534; d)
S. D. Ittel, L. K. Johnson, M. Brookhart, Chem. Rev. 2000,
100, 1169; e) S. Mecking, Coord. Chem. Rev. 2000, 203, 325; f)
G. J. P. Britovsek, V. C. Gibson, D. F. Wass, Angew. Chem.
1999, 111, 448; Angew. Chem. Int. Ed. 1999, 38, 428.
G. Steiner, A. Krajete, H. Kopacka, K.-H. Ongania, K. Wurst,
P. Preishuber-Pflügl, B. Bildstein, Eur. J. Inorg. Chem. 2004,
2827.
Crystallography: Crystallographic data for 8, 12a, 12b, and 13 are
given in Table 2. The data collection was performed on a Nonius
Kappa-CCD equipped with graphite-monochromated Mo-Kα radi-
ation (λ = 0.71073 Å) and a nominal crystal-to-area-detector dis-
tance of 36 mm. Intensities were integrated using DENZO and
scaled with SCALEPACK.[14] Several scans in φ and ω direction
were made to increase the number of redundant reflections, which
were averaged in the refinement cycles. This procedure replaces an
empirical absorption correction. The structures were solved by di-
rect methods (SHELXS-86) and refined against F2 (SHELX-97).[15]
Hydrogen atoms at carbon atoms were added geometrically and
refined using a riding model. All non-hydrogen atoms were refined
with anisotropic displacement parameters.
The structure determination of 13 was complicated by two crystal-
lographic characteristics. First, several crystals were examined and
showed systematic twinning. The best crystal was measured and
the 20 worst overlying reflections were omitted in the refinement.
Second, the correct determination of the space group because of a
possible transformation to bravais lattice higher in symmetry. In
the triclinic space group were two identical molecules, which can
be transferred into each other by refinement in the monoclinic
space group C2/c. Nevertheless, the space group C2/c was excluded
because the Rint value of 0.176 for 8154 symmetry-equivalent reflec-
tions is much higher than the Rint value of 0.038 for 4919 reflections
in the triclinic space group. In addition, the conventional R1 value
of 0.0750 is also higher (0.0542). The unit cell constants of the
transformed C-centered lattice are 3958.4, 856.6, 136.39 pm and
90.04, 97.48, 91.42°. The deviation of the angle γ from over 1° to
the correct 90° angle is also too high for this monoclinic space
group.
[5]
[6]
[7]
[8]
M. Froseth, A. Dhindsa, H. Roise, M. Tilset, Dalton Trans.
2003, 4516.
K. S. Coleman, H. T. Chamberlayne, S. Turberville, M. L. H.
Green, A. R. Cowley, Dalton Trans. 2003, 2917.
D. S. McGuiness, K. J. Cavell, Organometallics 2000, 19, 741.
[9] a) B. Bildstein, P. Denifl, Synthesis 1994, 158; b) G. A. Luin-
stra, J. Queisser, B. Bildstein, H.-H. Görtz, C. Amort, M. Ma-
laun, A. Krajete, G. Werne, M. O. Kristen, N. Huber, C. Ger-
nert, Highly Active Ethene Polymerization Catalysts with Un-
usual Imine Ligands, in Late Transition Metal Polymerization
Catalysis (Eds.: B. Rieger, L. S. Baugh, S. Kacker, S. Striegler),
Wiley-VCH, Weinheim, 2003, chapter 3, p. 59.
[10] N. Kuhn, G. Henkel, T. Kratz, Z. Naturforsch. Teil B 1993, 48,
973.
[11] N. Kuhn, G. Henkel, T. Kratz, Chem. Ber. 1993, 126, 2047.
[12] a) B. Bildstein, M. Malaun, H. Kopacka, K.-H. Ongania, K.
Wurst, J. Organomet. Chem. 1999, 572, 177; b) B. Bildstein, M.
Malaun, H. Kopacka, K.-H. Ongania, K. Wurst, J. Organomet.
Chem. 1998, 552, 45; c) W. A. Herrmann, L. J. Goossen,
G. R. J. Artus, C. Köcher, Organometallics 1997, 16, 2477; d)
W. A. Herrmann, C. Köcher, L. J. Goossen, G. R. J. Artus,
Chem. Eur. J. 1996, 2, 1627; e) W. A. Herrmann, L. J. Goossen,
C. Köcher, G. R. J. Artus, Angew. Chem. 1996, 108, 2980; An-
gew. Chem. Int. Ed. Engl. 1996, 35, 2805; f) W. A. Herrmann,
G. M. Lobmaier, M. Elison, J. Organomet. Chem. 1996, 520,
231; g) K. Öfele, W. A. Herrmann, D. Mihalios, M. Elison, E.
Herdtweck, T. Priermeier, P. Kiprof, J. Organomet. Chem. 1995,
498, 1.
CCDC-252740 (for 8), -252741 (for 12a), -252742 (for 12b), and
-252743 (for 13) contain the supplementary crystallographic data
for this paper. These data can be obtained free of charge from The
Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/
data_request/cif.
[13] R. J. Carbajo, L. Zhang, F. Lopez-Ortiz, Magn. Reson. Chem.
1998, 36, 807.
Acknowledgments
[14] Processing of X-ray diffraction data collected in oscillation
mode: Z. Otwinowski, W. Minor, Methods Enzymol. 1997, 276,
307.
Support from BASF Aktiengesellschaft, Ludwigshafen, Germany,
is gratefully acknowledged.
[15] G. M. Sheldrick, Program package SHELXTL V.5.1, Bruker
Analytical X-ray Instruments Inc., Madison, USA, 1997.
Received: October 14, 2004
[1] Reviews: a) Carbene Chemistry (Ed.: G. Bertrand), Marcel
Dekker, Inc., New York, 2002; b) W. A. Herrmann, Angew.
Eur. J. Inorg. Chem. 2005, 1325–1333
© 2005 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
1333