A R T I C L E S
Huang et al.
indium oxide, ITO)-HTL interface is crucial to hole injection
in a common scenario where ITO-HTL contact rather than HTL
bulk mobility limits charge injection.27-31 A variety of interfacial
engineering approaches have been applied to the anode-HTL
junction,32-37 including introduction of π-conjugated polymers,38
copper phthalocyanine,26,39,40 organic acids,41 a thin layer of
platinum,28 self-assembled polar molecules30,42 or siloxanes,31,43
and plasma treatment of the ITO surface.44 All of these
approaches have effects on hole injection and yield varying
degrees of improved device performance in terms of turn-on
voltage, luminance, stability, and/or quantum efficiency. How-
ever, in general, the interlayers employed in these approaches
cannot replace conventional triarylamine HTLs to yield high-
performance OLEDs. Note that designing new HTL materials
specifically targeting anode-HTL interfacial contact has largely
been ignored.14,15,45
In this contribution, we present a full discussion of our efforts
to design, synthesize, implement, and understand the conse-
quences of hole transporting materials as OLED HTLs which
achieve covalent ITO anode-HTL bonding (Scheme 2).46
Followed by deposition of a conventional EML/ETL (tris(8-
hydroxyquinolato)aluminum(III) (Alq, Scheme 1), this approach
affords OLEDs with superior performance versus devices relying
on simple ITO-NPB interfaces. For TPD-Si2 functionalized
anodes, luminances as high as 36 000 cd/m2 with turn-on
voltages as low as 5.0 V are achieved, 2.5× brighter and 4 V
lower, respectively, than for analogous NPB-based devices.
Also, a current efficiency of ∼6 cd/A, equivalent to ∼1.6%
external forward quantum efficiency, is achieved at 12 V. We
also show that the same approach can be applied as covalently
bonded ITO anode-NPB interlayers, resulting in OLEDs with
more impressive performance (64 000 cd/m2 luminance; 8 cd/A
Figure 1. Cross-section of a typical multilayer OLED structure.
decay to ground states and emit light.4 Sophisticated multilayer
structures incorporating specifically tailored hole transport layers
(HTLs), emissive layers (EMLs), and electron transport layers
(ETLs) sandwiched between the two electrodes have been
developed and generally exhibit superior device performance
versus single-layer counterparts (Figure 1). To date, much effort
has been devoted to developing new HTL materials to fulfill
criteria such as substantial hole mobility, good energy level
matching with anodes and EMLs (low hole injection barriers
from the anode to the HTL and from the HTL to the EML;
large electron injection barrier from the EML to the HTL), good
thermal properties (stability; Tg), low optical absorption in the
visible region, and smooth, amorphous film-forming mor-
phology.14-22
To date, triarylamines have proven to be one of the most
efficient classes of HTL molecules according to the above
criteria, with 1,4-bis(phenyl-m-tolylamino)biphenyl (TPD, Scheme
1) an archetypical example. However, TPD has a low glass
transition temperature (Tg ) 65 °C) and tends to crystallize at
elevated temperatures, disrupting the amorphous nature of the
HTL and causing device degradation.23 Therefore, one major
focus in developing HTL materials is to improve the poor
thermal stability of TPD by synthesizing small molecule TPD
analogues with higher Tg parameters and/or by incorporating a
triarylamine hole transport motif into a polymer chain.20,24,25
In this regard, 1,4-bis(1-naphthylphenylamino)biphenyl (NPB,
Scheme 1) is a TPD analogue with a higher Tg and has been
widely used as a TPD replacement.26 However, most of the
effort in this direction has not led to significant device
performance improvements over TPD-based OLEDs. In contrast,
increasing evidence indicates that the anode (usually tin-doped
(27) Forsythe, E. W.; Abkowitz, M. A.; Gao, Y. J. Phys. Chem. B 2000, 104,
3948-3952.
(28) Shen, Y.; Jacobs, D. B.; Malliaras, G. G.; Koley, G.; Spencer, M. G.;
Ioannidis, A. AdV. Mater. 2001, 13, 1234-1238.
(29) Nesch, F.; Forsythe, E. W.; Le, Q. T.; Gao, Y.; Rothberg, L. J. J. Appl.
Phys. 2000, 87, 7973-7980.
(30) Appleyard, S. F. J.; Day, S. R.; Pickford, R. D.; Willis, M. R. J. Mater.
Chem. 2000, 10, 169-173.
(31) Malinsky, J. E.; Jabbour, G. E.; Shaheen, S. E.; Anderson, J. D.; Richter,
A. G.; Marks, T. J.; Armstrong, N. R.; Kippelen, B.; Dutta, P.; Peygham-
barian, N. AdV. Mater. 1999, 11, 227-231.
(32) Zuppiroli, L.; Si-Ahmed, L.; Kamars, K.; Nesch, F.; Bussac, M. N.; Ades,
D.; Siove, A.; Moons, E.; Grtzel, M. Eur. Phys. J. B 1999, 11, 505-512.
(33) Ho, P. K. H.; Granstrom, M.; Friend, R. H.; Greenham, N. C. AdV. Mater.
1998, 10, 769-771.
(34) Nesch, F.; Rtzinger, F.; Si-Ahmed, L.; Zuppiroli, L. Chem. Phys. Lett. 1998,
288, 861-867.
(14) Ren, X.; Alleyne, B. D.; Djurovich, P. I.; Adachi, C.; Tsyba, I.; Bau, R.;
Thompson, M. E. Inorg. Chem. 2004, 43, 1697-1707.
(15) Hreha, R. D.; George, C. P.; Haldi, A.; Domercq, B.; Malagoli, M.; Barlow,
S.; Bredas, J.-l.; Kippelen, B.; Marder, S. R. AdV. Funct. Mater. 2003, 13,
967-973.
(35) Morgado, J.; Charas, A.; Barbagallo, N.; Alcacer, L.; Matos, M.; Cacialli,
F. Macromol. Symp. 2004, 212, 381-386.
(36) Hatton, R. A.; Willis, M. R.; Chesters, M. A.; Rutten, F. J. M.; Briggs, D.
J. Mater. Chem. 2003, 13, 38-43.
(37) Campbell, I. H.; Kress, J. D.; Martin, R. L.; Smith, D. L.; Barashkov, N.
N.; Ferraris, J. P. Appl. Phys. Lett. 1997, 71, 3528-3530.
(38) Gross, M.; Muller, D.; Nothofer, H.; Scherf, U.; Neher, D.; Brauchle, C.;
Meerholz, K. Nature 2000, 405, 661-665.
(16) Gong, X.; Moses, D.; Heeger, A. J.; Liu, S.; Jen, A. K. Y. Appl. Phys.
Lett. 2003, 83, 183-185.
(17) Ma, C.-Q.; Zhang, L.-Q.; Zhou, J.-H.; Wang, X.-S.; Zhang, B.-W.; Cao,
Y.; Bugnon, P.; Schaer, M.; Nuesch, F.; Zhang, D.-Q.; Qiu, Y. Chin. J.
Chem. 2002, 20, 929-932.
(39) Tadayyon, S. M.; Grandin, H. M.; Griffiths, K.; Norton, P. R.; Aziz, H.;
Popovic, Z. D. Org. Electron. 2004, 5, 157-166.
(18) Fujikawa, H.; Ishii, M.; Tokito, I.; Taga, Y. Mater. Res. Soc. Symp. Proc.
2001, 621, Q3.4.1-Q3.4.11.
(40) Mori, T.; Mitsuoka, T.; Ishii, M.; Fujikawa, H.; Taga, Y. Appl. Phys. Lett.
2002, 80, 3895-3897.
(19) Liu, S.; Jiang, X.; Ma, H.; Liu, M. S.; Jen, A. K. Y. Macromolecules 2000,
33, 3514-3517.
(41) Nesch, F.; Forsythe, E. W.; Le, Q. T.; Gao, Y.; Rothberg, L. J. J. Appl.
Phys. 2000, 87, 7973-7976.
(20) Koene, B. E.; Loy, D. E.; Thompson, M. E. Chem. Mater. 1998, 10, 2235-
(42) Ganzorig, C.; Kwak, K. J.; Yagi, K.; Fujihira, M. Appl. Phys. Lett. 2001,
79, 272-274.
2250.
(21) Thayumanavan, S.; Barlow, S.; Marder, S. R. Chem. Mater. 1997, 9, 3231-
3235.
(43) Cui, J.; Huang, Q.; Wang, Q.; Marks, T. J. Langmuir 2001, 17, 2051-
2054.
(22) Tang, C. W.; VanSlyke, S. A. Appl. Phys. Lett. 1987, 51, 913-915.
(23) Adachi, C.; Tsutsui, T.; Saito, S. Appl. Phys. Lett. 1990, 56, 799-801.
(24) Santerre, F.; Bedja, I.; Dodelet, J. P.; Sun, Y.; Lu, J.; Hay, A. S.; D’Iorio,
M. Chem. Mater. 2001, 13, 1739-1745.
(44) Milliron, D. J.; Hill, I. G.; Shen, C.; Kahn, A.; Schwartz, J. J. Appl. Phys.
2000, 87, 572-576.
(45) Adachi, C.; Nagai, K.; Tamoto, N. Appl. Phys. Lett. 1995, 66, 2679-2681.
(46) Portions of this work were previously communicated in part. Huang, Q.;
Evmenenko, G.; Dutta, P.; Marks, T. J. J. Am. Chem. Soc. 2003, 125,
14704-14705. Cui, J.; Huang, Q.; Veinot, J. C. G.; Yan, H.; Wang, Q.;
Hutchison, G. R.; Richter, A. G.; Evmenenko, G.; Dutta, P.; Marks, T. J.
Langmuir 2002, 18, 9958-9970.
(25) Shirota, Y.; Okumoto, K.; Inada, H. Synth. Met. 2000, 111-112, 387-
391.
(26) Van Slyke, S. A.; Chen, C. H.; Tang, C. W. Appl. Phys. Lett. 1996, 69,
2160-2162.
9
10228 J. AM. CHEM. SOC. VOL. 127, NO. 29, 2005