3490
W. Han et al. / Bioorg. Med. Chem. Lett. 15 (2005) 3487–3490
2. (a) Bartenschlager, R. Antivir. Chem. Chemother. 1997, 8,
281; (b) Brass, V.; Blum, H. E.; Moradpour, D. Expert
Opin. Ther. Targets 2004, 8, 295; (c) De Francesco, R.;
Rice, C. M. Clin. Liver Dis. 2003, 7, 211.
3. (a) Bartenschlager, R. J. Viral Hepat. 1999, 6, 165;
(b) LaPlante, S. R.; Cameron, D. R.; Aubry, N.;
Lefebvre, S.; Kukolj, G.; Maurice, R.; Thibeault, D.;
Martin oxidation provided the corresponding a-keto-
amides 5a and 5b in good yields.
The synthesis of the N-sulfonylglycinamide analogs is
illustrated in Scheme 2. Hydrolysis of 4 followed by cou-
pling with glycine t-butyester gave intermediate 6. Dess–
Martin oxidation yielded the corresponding a-keto-
amides, which was hydrolyzed under acidic conditions
to yield acid 7. Treatment of 7 with various sulfona-
mides in the presence of EDCI and DMAP provided
the desired a-keto sulfonylglycinamides 8.
`
Lamarre, D.; Llinas-Brunet, M. J. Biol. Chem. 1999,
274, 18618; (c) DiMarco, S.; Rizzi, M.; Volpari, C.;
Walsh, M. A.; Narjes, F.; Colarusso, S.; De France-
sco, R.; Matassa, V. G.; Sollazzo, M. J. Biol. Chem.
2000, 275, 7152.
4. (a) Kolykhalov, A. A.; Agapov, E. V.; Blight, K. J.;
Mihalik, K.; Feinstone, S. M.; Rice, C. M. Science 1997,
277, 570; (b) Kolykhalov, A. A.; Mihalik, K.; Feinstone, S.
M.; Rice, C. M. J. Virol. 2000, 74, 2046.
5. (a) Love, R. A.; Parge, H. E.; Wickersham, J. A.;
Hostomsky, Z.; Habuka, N.; Moomaw, E. W.; Adachi,
T.; Hostomska, Z. Cell 1996, 87, 331; (b) Kim, J. L.;
Morgenstern, K. A.; Lin, C.; Fox, T.; Dwyer, M. D.;
Landro, J. A.; Chambers, S. P.; Markland, W.; Lepre, C.
A.; OÕMalley, E. T.; Harbeson, J. A. Cell 1996, 87, 343;
(c) Yao, N.; Reichert, P.; Taremi, S. S.; Prosise, W. W.;
Weber, P. C. Structure 1999, 7, 1353.
In summary, acid isosteres such as sulfonic acid, tetrazole,
and N-sulfonylglycinamide were investigated as carbox-
ylic acid replacement using a tetrapeptide-based a-keto-
amide template. All three types of acid isosteres were
efficient carboxylic acid replacements. Incorporation of
the optimized difluoroethyl P1 group yielded a series of
potent HCV NS3 protease inhibitors with IC50 of 20–
60 nM.
6. (a) Han, W.; Hu, Z.-L.; Jiang, X.-J.; Decicco, C. P. Bioorg.
Med. Chem. Lett. 2000, 10, 711, and references therein; (b)
Han, W.; Jiang, X.-J.; Hu, Z.-L.; Wasserman, Z. R.;
Decicco, C. P. Abstracts of presentation, National Meeting
of the American Chemical Society, San Diego, Apr 2001;
MEDI-119 and MEDI-121.
7. For IC50 determination conditions, see reference 6a.
8. (a) Han, W.; Hu, Z.-L.; Jiang, X.-J.; Wasserman, Z. R.;
Decicco, C. P. Bioorg. Med. Chem. Lett. 2003, 13, 1111; (b)
The 2,2-difluoroethyl P1 was first described by Narjes et al.
Narjes, F.; Koehler, K. F.; Koch, U.; Gerlach, B.;
Acknowledgments
We thank Drs. Bruce D. Korant and Marina G. Bukhti-
yarova for providing HCV protease, Dr. James L. Meek
and Ms. Lorraine Gorey-Feret for determination of
IC50 values.
References and notes
Colarusso, S.; Steinkuhler, C.; Brunetti, M.; Altamura, S.;
¨
De Francesco, R.; Matassa, V. G. Bioorg. Med. Chem. Lett.
2002, 12, 701.
1. (a) Houghton, M. In Fields Virology, 3rd ed.; Raven Press:
New York, 1996, pp P1035–P1058; (b) Narjes, F.; Koch, U.;
Steinkuhler, C. Expert Opin. Investig. New Drugs 2003, 12, 153.