DOI: 10.1039/C4CC07097F
Page 3 of 5
Journal Name
ChemComm
COMMUNICATION
derivatives have much slower reactivities than N-benzyl derivatives
In summary, we found that BiVO4 acted as an efficient
in those reaction systems. In our case, we also make a comparison of photocatalyst with visible light for the oxidation of a series of
the reaction rates between the N-benzyl and N-tert-butyl amines, forming the corresponding imines using O2 as oxidant.
benzylamine. The results were described in the figure 1. The slight Importantly, various bulky N-tert-butyl substituted benzylamine,
difference of the reactivities among these two substrates indicated which were proven to be a disfavoured type of substrates reported in
that the photooxidation of amine catalyzed by BiVO4 might have a the literature11a, 12a, could also be oxidized with high selectivities (up
different course to produce the corresponding imines.
to 99%).
To understand the mechanism of the present catalytic system, a
series of kinetic experiments of para-substituted N-tert-butyl
benzylamines (MeO, Me, H, Cl, and F groups) were conducted in
the photocatalytic oxidation. The slope of the linear plot giving a ρ
value close to zero indicates that the rate-determining step of this
reaction doesn’t involve the Cα-H activation (Figure 2).
We acknowledge the financial support from the National Nature
Science Foundation of China (NSFC Grant No. 21322202) and the
Basic Research Program of China (973 Program: 2014CB239403).
Notes and references
a State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics,
Chinese Academy of Sciences, Dalian 116023, China.
E-mail: yanliu503@dicp.ac.cn, canli@dicp.ac.cn
† Electronic Supplementary Information (ESI) available: [Experimental
details and Figures S1-S6]. See DOI: 10.1039/c000000x/
1.5
1.0
1. (a) H. Kisch, Angew. Chem. Int. Ed., 2013, 52, 812-847; (b) G.
Palmisano, V. Augugliaro, M. Pagliaro and L. Palmisano, Chem.
Commun., 2007, 3425-3437; (c) G. Palmisano, E. Garcia-Lopez, G.
Marci, V. Loddo, S. Yurdakal, V. Augugliaro and L. Palmisano, Chem.
Commun., 2010, 46, 7074-7089; (d) D. Ravelli, M. Fagnoni and A.
Albini, Chem. Soc. Rev., 2013, 42, 97-113; (e) S. Linic, P. Christopher
and D. B. Ingram, Nature Mater., 2011, 10, 911-921.
2. (a) J. Du, K. L. Skubi, D. M. Schultz and T. P. Yoon, Science, 2014, 344,
392-396; (b) D. A. Nicewicz and D. W. MacMillan, Science, 2008, 322,
77-80; (c) A. McNally, C. K. Prier and D. W. C. MacMillan, Science,
2011, 334, 1114-1117; (d) M. T. Pirnot, D. A. Rankic, D. B. Martin and
D. W. MacMillan, Science, 2013, 339, 1593-1596; (e) D. A. Nagib and
D. W. MacMillan, Nature, 2011, 480, 224-228; (f) A. G. Condie, J. C.
González-Gómez and C. R. J. Stephenson, J. Am. Chem. Soc., 2010, 132,
1464-1465; (g) J. D. Nguyen, E. M. D'Amato, J. M. Narayanam and C. R.
Stephenson, Nature Chem., 2012, 4, 854-859.
p-CH
p-CH O
p-H
0.5
0.0
3
p-F
3
p-Cl
-0.5
-1.0
-1.5
-0.4
-0.3
-0.2
-0.1
0.0
0.1
0.2
0.3
0.4
Figure 2: Hammett plots for the oxidation of substituted secondary
amines with oxygen using BiVO4 catalyst. Hammett plots were
obtained from a ratio of conversion with reaction time of 60 min; the
reaction condition was given in Table 2
3. F. Z. Su, S. C. Mathew, L. Möhlmann, M. Antonietti, X. C. Wang and S.
Blechert, Angew. Chem. Int. Ed., 2011, 50, 657-660.
4. X. J. Lang, X. D. Chen and J. C. Zhao, Chem. Soc. Rev., 2014, 43, 473-
486.
5. (a) Q. Wang, M. Zhang, C. C. Chen, W. H. Ma and J. C. Zhao, Angew.
Chem. Int. Ed., 2010, 49, 7976-7979; (b) S. Yurdakal, G. Palmisano, V.
Loddo, V. Augugliaro and L. Palmisano, J. Am. Chem. Soc., 2008, 130,
1568-1569.
6. (a) W. Y. Ahn, S. A. Sheeley, T. Rajh and D. M. Cropek, Appl. Catal. B,
2007, 74, 103-110; (b) O. V. Makarova, T. Rajh and M. C. Thurnauer,
Environ. Sci. Technol., 2000, 34, 4797-4803.
7. R. D. Patil and S. Adimurthy, Asian J. Org. Chem., 2013, 2, 726-744.
8. M. Largeron, Eur. J. Org. Chem., 2013, 5225-5235.
Based on the above results, we propose a possible reaction
mechanism as shown in figure 3: electron (e-) and hole (h+) pairs are
generated by the irradiation of BiVO4. The photogenerated electron
reduces molecular oxygen to produce activated oxygen species. At
the same time, amine probably loses an electron, thus forming the
carbocationic-radical type intermediate. The activated oxygen
species react with protons which are from the hole oxidation of
amine.
Figure 3: The proposed mechanism of photooxidation of amine
9. (a) K. C. Nicolaou, C. J. N. Mathison and T. Montagnon, Angew. Chem.
Int. Ed., 2003, 42, 4077-4082; (b) K. C. Nicolaou, C. J. N. Mathison and
T. Montagnon, J. Am. Chem. Soc., 2004, 126, 5192-5201.
catalyzed by BiVO4.
10. S. I. Murahashi, Angew. Chem. Int. Ed., 1995, 34, 2443-2465.
11. (a) X. J. Lang, H. W. Ji, C. C. Chen, W. H. Ma and J. C. Zhao, Angew.
Chem. Int. Ed., 2011, 50, 3934-3937; (b) N. Li, X. J. Lang, W. H. Ma, H.
W. Ji, C. C. Chen and J. C. Zhao, Chem. Commun., 2013, 49, 5034-5036;
(c) X. J. Lang, W. H. Ma, Y. B. Zhao, C. C. Chen, H. W. Ji and J. C.
Zhao, Chem. Eur. J., 2012, 18, 2624-2631.
12. (a) S. Furukawa, Y. Ohno, T. Shishido, K. Teramura and T. Tanaka, ACS
Catal., 2011, 1, 1150-1153; (b) S. Furukawa, Y. Ohno, T. Shishido, K.
Teramura and T. Tanaka, J. Phy. Chem. C, 2013, 117, 442-450.
13. S. I. Naya, K. Kimura and H. Tada, ACS Catal., 2013, 3, 10-13.
14. Z. Xie, C. Wang, K. E. deKrafft and W. Lin, J. Am. Chem. Soc., 2011,
133, 2056-2059.
15. (a) H. A. Ho, K. Manna and A. D. Sadow, Angew. Chem. Int. Ed., 2012,
51, 8607-8610; (b) M. Rueping, C. Vila, A. Szadkowska, R. M. Koenigs
and J. Fronert, ACS Catal., 2012, 2, 2810-2815.
16. W. W. Zhao, C. B. Liu, L. M. Cao, X. G. Yin, H. L. Xu and B. Zhang,
RSC Adv., 2013, 3, 22944-22948.
In order to confirm the mechanism, a reaction using AgNO3
instead of O2 as acceptor of photogenerated electron was carried out.
The reaction shows even higher activity (See Figure S7). It
demonstrates that photogenerated hole is an oxidative active site and
O2 is a capture of photogenerated electron.
17. X. J. Yang, B. Chen, X. B. Li, L. Q. Zheng, L. Z. Wu and C. H. Tung,
Chem. Commun., 2014, 50, 6664-6667.
This journal is © The Royal Society of Chemistry 2012
J. Name., 2012, 00, 1-3 | 3