Published on Web 06/12/2007
Model for Antibiotic Optimization via Neoglycosylation:
Synthesis of Liponeoglycopeptides Active against VRE
Byron R. Griffith,†,‡ Candace Krepel,§ Xun Fu,†,‡ Sophie Blanchard,†,‡
Aqeel Ahmed,†,‡ Charles E. Edmiston,§ and Jon S. Thorson*,†,‡
Contribution from the DiVision of Pharmaceutical Sciences and the National Drug DiscoVery
Group, UniVersity of WisconsinsMadison, Madison, Wisconsin 53706, and Department of
Surgery, Medical College of Wisconsin, Milwaukee, Wisconsin 53226
Received December 11, 2006; E-mail: jsthorson@pharmacy.wisc.edu.
Abstract: The neoglycosylation of a methoxyamine-appended vancomycin aglycon with all possible N′-
decanoylglucopyranose and N′-biphenoylglucopyranose regioisomers led to the production of a focused
set of liponeoglycopeptide variants in good yields and with excellent stereoselectivity. High-throughput
antibacterial assays employing a unique set of vancomycin-resistant Enterococci faecalis and Enterococci
faecium clinical isolates revealed that the nature and regiochemistry of glycosyl lipidation modulated
vancomycin-resistent Enterococci potency. In contrast to prior work with lipoglycopeptides, this study reveals
the glucose C3′ or C4′ as the optimal position for neoglycopeptide lipidation. This purely chemical method
for the diversification of the glycolipid portion of lipoglycopeptide antibiotics is simple to perform on a large
scale, requires minimal synthetic effort in sugar donor preparation, and provides access to highly active
antibiotics that are not easily prepared by other state-of-the-art methods.
Introduction
moiety, illustrated by teicoplanin (2) and dalbavancin (4), as a
replacement for the natural disaccharide of vancomycin (1). The
The global emergence of vancomycin-resistant Enterococci
(VRE),1 coupled with the recent transfer of vancomycin (1)
resistance to highly pathogenic Staphylococcus aureus (S.
aureus) strains,2,3 has provided a major impetus for developing
new glycopeptide derivatives (Figure 1, 2-11). Although
efficient chemoenzymatic strategies for glycopeptide optimiza-
tion have recently emerged,4 the chemical modification of
glycopeptide sugar substituents remains among the most suc-
cessful strategies to date.5 From these extensive studies, two
major “pharmacophores” have emerged, the first of which was
inspired by the natural lipoglycopeptide teicoplanin (2, Figure
1). These analogues (e.g., 3)6 carry a signature 2′-N-acyl glucosyl
alternative sugar-modified pharmacophore derives from the
chlorobiphenyl-based 3′-alkylation of a glycopeptide-attached
vancosamine as exemplified by oritavancin (5) and chlorobi-
phenyl vancomycin (6).5a,7 In general, compounds containing
the straight-chain 2′-N-acyl glucolipid retain activity against
VanB-type VRE by avoiding the induction of resistance genes
in the targeted bacteria, which allows these antibiotics to bind
to the transglycosylase substrate Lipid II and inhibit bacterial
cell wall biosynthesis. In contrast, compounds containing the
chlorobiphenyl-substituted vancosminylglucosyl disaccharide
retain activity against both VanA- and VanB-type VRE by direct
inhibition of the transglycosylase, even in the absence of the
Lipid II substrate.5b Yet, despite advances in understanding the
mechanisms of vancomycin resistance and how to overcome
them, the systematic study of the lipoglycopeptide structure-
activity relationship (SAR) and its application toward antibiotic
optimization remains restricted by the lack of efficient, diver-
gent, synthetic strategies for lipoglycopeptide sugar modifica-
tion.
† Division of Pharmaceutical Sciences, University of Wisconsins
Madison.
‡ National Drug Discovery Group, University of WisconsinsMadison.
§ Medical College of Wisconsin.
(1) Murray, B. E. N. Engl. J. Med. 2000, 342, 710-721.
(2) Weigel, L. M.; Clewell, D. B.; Gill, S. R.; Clark, N. C.; McDougal, L. K.;
Flannagan, S. E.; Kolonay, J. F.; Shetty, J.; Killgore, G. E.; Tenover, F. C.
Science 2003, 302, 1569-1571.
(3) Chang, S.; Sievert, D. M.; Hageman, J. C.; Boulton, M. L.; Tenover, F.
C.; Downes, F. P.; Shah, S.; Rudrik, J. T.; Pupp, G. R.; Brown, W. J.;
Cardo, D.; Fridkin, S. K. N. Engl. J. Med. 2003, 348, 1342-1347.
(4) (a) Losey, H. C.; Peczuh, M. W.; Chen, Z.; Eggert, U. S.; Dong, S. D.;
Pelczer, I.; Kahne, D.; Walsh, C. T. Biochemistry 2001, 40, 4745-4755.
(b) Losey, H. C.; Jiang, J. Q.; Biggins, J. B.; Oberthur, M.; Ye, X. Y.;
Dong, S. D.; Kahne, D.; Thorson, J. S.; Walsh, C. T. Chem. Biol. 2002, 9,
1305-1314. (c) Fu, X.; Albermann, C.; Jiang, J. Q.; Liao, J. C.; Zhang, C.
S.; Thorson, J. S. Nat. Biotechnol. 2003, 21, 1467-1469. (d) Lin, H. N.;
Walsh, C. T. 2004, 126, 13998-14003. (e) Fu, X.; Albermann, C.; Zhang,
C. S.; Thorson, J. S. Org. Lett. 2005, 7, 1513-1515. (f) Kruger, R. G.; Lu,
W.; Oberthur, M.; Tao, J. H.; Kahne, D.; Walsh, C. T. Chem. Biol. 2005,
12, 131-140. (g) Zhang, C. S.; Griffith, B. R.; Fu, Q.; Albermann, C.; Fu,
X.; Lee, I. K.; Li, L. J.; Thorson, J. S. Science 2006, 313, 1291-1294.
(5) (a) Allen, N. E.; Nicas, T. I. FEMS Microbiol. ReV. 2003, 26, 511-532.
(b) Kahne, D.; Leimkuhler, C.; Wei, L.; Walsh, C. Chem. ReV. 2005, 105,
425-448.
Neoglycosides are formed by the chemoselective ligation of
an unprotected, unactivated reducing sugar with an alkoxyamine-
containing aglycon.8,9 The stereoselectivity of the neoglycosy-
lation reaction is dictated in part by the sugar donor, and in the
case of glucose and GlcNAc, the â-anomer forms exclusively.8
In the context of natural product glycorandomization, neogly-
(6) Dong, S. D.; Oberthur, M.; Losey, H. C.; Anderson, J. W.; Eggert, U. S.;
Peczuh, M. W.; Walsh, C. T.; Kahne, D. J. Am. Chem. Soc. 2002, 124,
9064-9065.
(7) Nagarajan, R.; Schabel, A. A.; Occolowitz, J. L.; Counter, F. T.; Ott, J. L.;
Feltyduckworth, A. M. J. Antimicrob. Chemother. 1989, 42, 63-72.
9
8150
J. AM. CHEM. SOC. 2007, 129, 8150-8155
10.1021/ja068602r CCC: $37.00 © 2007 American Chemical Society