10.1002/adsc.201900576
Advanced Synthesis & Catalysis
Soc. 1997, 119, 2125; f) A. F. Littke, G. C. Fu,
Angew. Chem., Int. Ed. 2002, 41, 4176; g) B. Saito,
G. C. Fu, J. Am. Chem. Soc. 2008, 130, 6694; h) G.
Cahiez, O. Gager, J. Buendia, Angew. Chem. Int. Ed.
2010, 49, 1278; i) A. He, J. R. Falck, J. Am. Chem.
Soc. 2010, 132, 2524; j) Z. Lu, G. C. Fu, Angew.
Chem. Int. Ed. 2010, 49, 6676; k) P. M. Lundin, G.
C. Fu, J. Am. Chem. Soc. 2010, 132, 11027; l) T.
Hatakeyama, T. Hashimoto, Y. Kondo, Y. Fujiwara,
H. Seike, H. Takaya, Y. Tamada, T. Ono, M.
Nakamura, J. Am. Chem. Soc. 2010, 132, 10674; m)
C.-T. Yang, Z.-Q. Zhang, Y.-C. Liu, L. Liu, Angew.
Chem. Int. Ed. 2011, 50, 3904; n) R. J. Lundgren, M.
Stradiotto, Chem. Eur. J. 2012, 18, 9758.
salt, delivering a cationic intermediate III and
regenerating radical I. Ultimately, the desired product
was obtained via
a
deboronization process.
Nonetheless, the details of the mechanism of this
reaction are not clear at present and more studies are
required to fully elucidate the reaction mechanism.
In summary, we developed an efficient metal-free
system, that is capable of activating the C–N bonds of
Katritzky pyridinium salts derived from diverse
alkylamines for deaminative vinylation to produce
various olefins. This transformation showed
exceptional functional group tolerance, high
efficiency, and excellent chemoselectivity. In view of
the widespread utility of the amine group, this
method offers a very meaningful tool in synthetic
transformation. We anticipate that the strategy
developed here may provide inspiration for the design
of new tactics to synthesize complex natural products
and other bioactive molecules.
[2] a) T.-Y. Luh, M. Leung, K.-T. Wong, Chem. Rev.,
2000, 100, 3187; b) R. Jana, T. P. Pathak, M. S.
Sigman, Chem. Rev. 2011, 111, 1417; c) M. R.
Netherton, G. C. Fu, Adv. Synth. Catal., 2004, 346,
1525.
[3] a) J. H. Kirchhoff, C. Dai, G. C. Fu, Angew. Chem.
Int. Ed. 2002, 41, 1945; b) M. R. Netherton, C. Dai,
K. Neusch tz, G. C. Fu, J. Am. Chem. Soc. 2001, 123,
10099; c) J. H. Kirchhoff, M. R. Netherton, I. D.
Hills, G. C. Fu, J. Am. Chem. Soc. 2002, 124, 13662;
d) M. R. Netherton, G. C. Fu, Angew. Chem. Int. Ed.
2002, 41, 3910; e) R. Jana, T. P. Pathak, M. S.
Sigman, Chem. Rev. 2011, 111, 1417.
Experimental Section
General
Procedure
for
Transition-Metal-Free
Deaminative Vinylation of Alkylamines:
Flame-dried 10 mL Schlenk tube filled with argon, 1-
cyclohexyl-2,4,6-triphenylpyridin-1-ium tetrafluoroborate
(95.4 mg, 0.2 mmol) (1b), (E)-styrylboronic acid (44.4 mg,
[4] a) J. T. Binder, C. J. Cordier, G. C. Fu, J. Am. Chem.
Soc. 2012, 134, 17003; b) F. -S. Han, Chem. Soc.
Rev. 2013, 42, 5270; c) S. Z. Tasker, E. A. Standley,
T. F. Jamison, Nature 2014, 509, 299; (d) K. M.
Cobb, J. M. Rabb-Lynch, M. E. Hoerrner, A.
0.3 mmol) (1c), absolutely dry DMA (1 mL) and DBU
(60.8 mg, 0.4 mol, 2 equiv) was added. The reaction
mixture was stirred for 10.0 hours at 80 oC. DCM (10 mL)
was added into reaction mixture, and then concentrated in
vacuo. The crude product was purified by column
chromatography on silica gel (200-300 mesh) (eluent: EA /
PE from 1 : 50 to 1 : 20) to afford the corresponding
product.
Manders, Q. Zhou, M. P. Watson, Org. Lett. 2017
,
19, 4355; e) N. Hazari, P. R. Melvin, M. M. Beromi,
Nat. Chem. Rev. 2017, 1, 0025.
[5] a) Y.-Y. Sun, J. Yi, X. Lu, Z. -Q. Zhang, B. Xiao, Y.
Fu, Chem. Commun. 2014, 50, 11060; b) Y. Zhou,
W. You, K. B. Smith, M. K. Brown, Angew. Chem.
Int. Ed. 2014, 53, 3475; c) Y. Zhou, W. You, K. B.
Smith, M. K. Brown, Angew. Chem. Int. Ed. 2014
53, 3475; d) P. Basnet, S. Thapa, D. A. Dickie, R.
Giri, Chem. Commun. 2016, 52, 11072.
,
Acknowledgements
We are grateful for financial support from the National Natural
Science Foundation of China (21901114), the Natural Science
Foundation of Jiangsu Province (BK20180685), the Natural Sci-
ence Foundation of Jiangsu Provincial Department of Education
(18KJB150017), and the Start-up Grant from Nanjing Tech Uni-
versity (38274017102 and 39837101) for financial support. The
SICAM Fellowship by Jiangsu National Synergetic Innovation
Center for Advanced Materials is also acknowledged.
[6] a) T. Hashimoto, T. Hatakeyama, M. Nakamura, J.
Org. Chem. 2012, 77, 1168; b) T. Hatakeyama, T.
Hashimoto, K. K. A. D. S. Kathriarachchi, T.
Zenmyo, H. Seike, M. Nakamura, Angew. Chem. Int.
Ed. 2012, 51, 8834; c) R. B. Bedford, P. B. Brenner,
E. Carter, T. W. Carvell, P. M. Cogswell, T.
Gallagher, J. N. Harvey, D. M. Murphy, E. C. Neeve,
J. Nunn, D. R. Pye, Chem. Eur. J. 2014, 20, 7935.
[7] a) D. Leonori, V. K. Aggarwal, Angew. Chem. Int.
Ed. 2015, 54, 1082; b) J. Llaveria, D. Leonori, V. K.
Aggarwal, J. Am. Chem. Soc. 2015, 137, 10958; c)
M. Odachowski, A. Bonet, S. Essafi, P. Conti-
Ramsden, J. N. Harvey, D. Leonori, V. K. Aggarwal,
J. Am. Chem. Soc. 2016, 138, 9521; d) R. J.
Armstrong, W. Niwetmarin, V. K. Aggarwal, Org.
Lett. 2017, 19, 2762; e) V. Ganesh, M. Odachowski,
V. K. Aggarwal, Angew. Chem. Int. Ed. 2017, 56,
References
[1] a) D. Milstein, J. K. Stille, J. Am. Chem. Soc. 1979
,
101, 4981; b) E. Negishi, Acc. Chem. Res. 1982, 15,
340; c) I. Tatsuo, A. Shigeru, M. Norio, S. Akira,
Chem. Lett. 1992, 21, 691; d) N. Miyaura, A. Suzuki,
Chem. Rev. 1995, 95, 2457; e) D. H. Burns, J. D.
Miller, H.-K. Chan, M. O. Delaney, J. Am. Chem.
5
This article is protected by copyright. All rights reserved.