10.1002/anie.201903060
Angewandte Chemie International Edition
COMMUNICATION
[1] R. Sanz, Org. Prep. Proced. Int. 2008, 40, 215−291.
[2] A. V. Dubrovskiy, N. A. Markina, R. C. Larock, Org. Biomol. Chem.
2013, 11, 191−218.
[45] M. L. Tîntas, A. P. Diac, A. Soran, A. Terec, I. Grosu, E. Bogdan, J.
Mol. Struct. 2014, 1058, 106–113.
[46] B. Rickborn, Org. React. 1998, 53, 223–629.
[3] S. Yoshida, T. Hosoya, Chem. Lett. 2015, 44, 1450−1460.
[4] S. S. Bhojgude, A. Bhunia, A. T. Biju, Acc. Chem. Res. 2016, 49,
1658−1670.
[5] V. Diemer, M. Begaud, F. R. Leroux, F. Colobert, Eur. J. Org. Chem
2011, 341–354.
[6] P. H.-Y. Cheong, R. S. Paton, S. M. Bronner, G.-Y. J. Im, N. K. Garg,
K. N. Houk, J. Am. Chem. Soc. 2010, 132, 1267–1269.
[7] N. F. Fine Nathel, L. A. Morrill, H. Mayr, N. K. Garg, J. Am. Chem.
Soc. 2016, 138, 10402–10405.
[47] W. Steglich, E. Buschmann, G. Gansen, L. Wilschowitz, Synthesis
1977, 252–253.
[48] Q. Miao, X. Chi, S. Xiao, R. Zeis, M. Lefenfeld, T. Siegrist, M. L.
Steigerwald, C. Nuckolls, J. Am. Chem. Soc. 2006, 128, 1340–1345.
[49] D. Chun, Y. Cheng, F. Wudl, Angew. Chem., Int. Ed. 2008, 47, 8380–
8385; Angew. Chem. 2008, 120, 8508–8513.
[50] DA reactions using substituted tetrazenes or isobenzofurans are
known, but also suffer from the inability to introduce two different strained
intermediates in a controlled fashion. For examples, see: references 2, 31,
32, 34 and S.-E. Suh, S. Chen, K. N. Houk, D. M. Chenoweth, Chem. Sci.
2018, 9, 7688–7693.
[8] C. C. Mauger, G. A. Mignani, Org. Process Res. Dev. 2004, 8,
1065−1071.
[51] J. Balcar, G. Chrisam, F. X. Huber, J. Sauer, Tetrahedron Lett. 1983,
24, 1481–1484.
[ 9 ] F. Schleth, T. Vettiger, M. Rommel, H. Tobler, World Patent
WO2011131544 A1, 2011.
[52] Y. Himeshima, T. Sonoda, H. Kobayashi, Chem. Lett. 1983, 12, 1211–
1214.
[53] D. Peña, D. Pérez, E. Guitián, L. Castedo, Org. Lett. 1999, 1, 1555–
1557.
[54] Silyl triflate precursors to 17, 19, 21, and 25 are all commercially
available from Sigma–Aldrich or TCI (see the SI for details).
[55] K. Afarinkia, V. Vinader, T. D. Nelson, G. H. Posner, Tetrahedron
1992, 48, 9111–9171.
[10] C. M. Gampe, E. M. Carreira, Angew. Chem., Int. Ed. 2012, 51,
3766−3778; Angew. Chem. 2012, 124, 3829−3842.
[11] P. M. Tadross, B. M. Stoltz, Chem. Rev. 2012, 112, 3550−3577.
[12] A. E. Goetz, N. K. Garg, Nat. Chem. 2012, 5, 54–60.
[13] T. C. McMahon, J. M. Medina, Y.-F. Yang, B. J. Simmons, K. N.
Houk, N. K. Garg, J. Am. Chem. Soc. 2015, 137, 4082–4085.
[14] C. Wentrup, R. Blanch, H. Briehl, G. Gross, J. Am. Chem. Soc. 1988,
110, 1874–1880.
[56] R. P. Johnson, K. J. Daoust, J. Am. Chem. Soc. 1995, 117, 362–367.
[57] X. Liu, J. Liu, B. Zheng, L. Yan, J. Dai, Z. Zhuang, J. Du, Y. Guo, D.
Xiao, New J. Chem. 2017, 41, 10607–10612.
[58] Q.-J. Ma, H.-P. Li, F. Yang, J. Zheng, X.-F. Wu, Y. Bai, X.-F. Li,
Sens. Actuators, B 2012, 166, 68–74.
[59] L. Tan, S. Mo, B. Fang, W. Cheng, M. Yin, J. Mater. Chem. C 2018,
6, 10270–10275.
[60] C. Reichardt, Chem. Rev. 1994, 94, 2319–2358.
[61] K.-B. Seo, I.-H. Lee, J. Lee, I. Choi, T.-L. Choi, J. Am. Chem. Soc.
2018, 140, 4335–4343.
[15] S. F. Talis, R. L. Danheiser, J. Am. Chem. Soc. 2014, 136, 15489–
15492.
[16] T. K. Shah, J. M. Medina, N. K. Garg, J. Am. Chem. Soc. 2016, 138,
4948–4954.
[17] A. E. Goetz, T. K. Shah, N. K. Garg, Chem. Commun. 2015, 51,
34−45.
[18] G.-Y. J. Im, S. M. Bronner, A. E. Goetz, R. S. Patton, P. H.-Y Cheong,
K. N. Houk, N. K. Garg, J. Am. Chem. Soc. 2010, 132, 17933–17944.
[19] M. G. Reinecke, Tetrahedron 1982, 38, 427–498.
[20] D. Pérez, D. Peña, E. Guitián, Eur. J. Org. Chem. 2013, 5981–6013.
[21] X. Xiao, T. R. Hoye, Nat. Chem. 2018, 10, 838–844.
[22] S. E. Suh, S. A. Barros, D. M. Chenoweth, Chem. Sci. 2015, 6, 5128–
5132.
[23] Y. Mizukoshi, K. Mikami, M. Uchiyama, J. Am. Chem. Soc. 2014,
137, 74–77.
[24] M. J. Allen, V. C. Tung, R. B. Kaner, Chem. Rev. 2010, 110, 132–145.
[25] A. C. Grimsdale, J. Wu, K. Müllen, Chem. Commun. 2005, 17, 2197–
2204.
[26] P. M. Beaujuge, M. J. Fréchet, J. Am. Chem. Soc. 2011, 133, 20009–
20029.
[27] A. Haller, A. Guyot, Compt. Rend. 1904, 138, 1251–1254.
[28] J. H. Carmel, J. S. Ward, M. M. Cooper, J. Chem. Educ. 2017, 94,
626–631.
[29] W. J. Jo, K. Kim, H. C. No, D. Shin, H. Oh, J. Son, Y. Kim, Y. Cho,
Q. Zhao, K. Lee, H. Oh, S. Kwon, Synth. Met. 2009, 159, 1359–1364.
[30] M. Chen, L. Yan, Y. Zhao, I. Murtaza, H. Meng, W. Huang, J. Mater.
Chem. C. 2018, 6, 7416–7444.
[31] J. T. Markiewicz, F. Wudl, ACS Appl. Mater. Interfaces 2015, 7,
28063–28085.
[32] J. E. Anthony, Chem. Rev. 2006, 106, 5028–5048.
[33] M. Stępień, E. Gońka, M. Żyła, N. Sprutta, Chem. Rev. 2017, 117,
3479–3716.
[34] F. Eiden, B. Wuensch, Arch. Pharm. 1986, 319, 886–889.
[35] C. Bozzo, M. D. Pujol, Heterocycl. Commun. 1996, 2, 163–168.
[36] J. Li, F. Yan, J. Gao, P. Li, W.-W. Xiong, Y. Zhao, X. W. Sun, Q.
Zhang, Dyes Pigm. 2014, 112, 93–98.
[37] S. J. Eum, Y. J. Cho, H. J. Kwon, B. O. Kim, S. M. Kim, S. S. Yoon,
U.S. Patent US8153279, 2012.
[38] X. Li, A. Fast, Z. Huang, D. A. Fishman, M. L. Tang, Angew. Chem.,
Int. Ed. 2017, 56, 5598–5602; Angew. Chem2017, 129, 5690–5694.
[39] C. Gao, D. Cui, Y. Wang, C. Zhang, X. Sun, Chinese Patent
CN10508599, 2018.
[40] C. Xia, C. Lin, T.-C. Wang, U.S. Patent US2016/0149139, 2016.
[ 41 ] C. Gao, D. Cui, Y. Wang, C. Zhang, X. Sun, World Patent
WO2016/192346, 2016.
[42] D.-H. Kim, J.-C. Park, H. M. Song, E.-K. Kim, Korean Patent KR10-
2010-0108120, 2010.
[43] J. L. Marshall, D. Lehnherr, B. D. Lindner, R. R. Tykwinski,
ChemPlusChem 2017, 82, 967–1001.
[44] J. B. Lin, T. K. Shah, A. E. Goetz, N. K. Garg, K. N. Houk, J. Am.
Chem. Soc. 2017, 139, 10447–10455.
This article is protected by copyright. All rights reserved.