Journal of the American Chemical Society
Page 8 of 10
Unactivated 1-Bromo-1,1-Difluoroalkanes. Angew. Chem. Int. Ed.
2016, 55, 5837–5841.
(21) Zhou, Q.; Ruffoni, A.; Gianatassio, R.; Fujiwara, Y.; Sella,
E.; Shabat, D.; Baran, P. S. Direct Synthesis of Fluorinated
Heteroarylether Bioisosteres. Angew. Chem. Int. Ed. 2013, 52, 3949–
3952.
(22) Fier, P. S.; Hartwig, J. F. Copper-Mediated
Difluoromethylation of Aryl and Vinyl Iodides. J. Am. Chem. Soc.
2012, 134, 5524–5527.
(23) Prakash, G. K. S.; Ganesh, S. K.; Jones, J.-P.; Kulkarni, A.;
Masood, K.; Swabeck, J. K.; Olah, G. A. Copper-Mediated
Difluoromethylation of (Hetero)Aryl Iodides and β-Styryl Halides
with Tributyl(Difluoromethyl)Stannane. Angew. Chem. Int. Ed. 2012,
51, 12090–12094.
(24) Yamauchi, Y.; Fukuhara, T.; Hara, S.; Senboku, H.
Electrochemical Carboxylation of α,α-Difluorotoluene Derivatives
and Its Application to the Synthesis of α-Fluorinated Nonsteroidal
Anti-Inflammatory Drugs. Synlett 2008, 438–442.
(25) Lund, Henning; Jensen, N. J. Electroorganic Preparations.
XXXVI. Stepwise Reduction of Benzotrifluoride. Acta Chem. Scand.
1974, 28B, 263–265.
(26) Munoz, S. B.; Ni, C.; Zhang, Z.; Wang, F.; Shao, N.;
Mathew, T.; Olah, G. A.; Prakash, G. K. S. Selective Late-Stage
Hydrodefluorination of Trifluoromethylarenes: A Facile Access to
Difluoromethylarenes. Eur. J. Org. Chem. 2017, 2322–2326.
(27) Fuchibe, K.; Ohshima, Y.; Mitomi, K.; Akiyama, T. Low-
Valent Niobium-Catalyzed Reduction of α,α,α-Trifluorotoluenes.
Org. Lett. 2007, 9, 1497–1499.
REFERENCES
1
2
3
4
5
6
7
8
(1)
Gillis, E. P.; Eastman, K. J.; Hill, M. D.; Donnelly, D. J.;
Meanwell, N. A. Applications of Fluorine in Medicinal Chemistry. J.
Med. Chem. 2015, 58, 8315–8359
(2)
Fluorine in Medicinal Chemistry. Chem. Soc. Rev. 2008, 37, 320–330.
(3) Hagmann, W. K. The Many Roles for Fluorine in
Medicinal Chemistry. J. Med. Chem. 2008, 51, 4359–4369.
(4) Zhou, Y.; Wang, J.; Gu, Z.; Wang, S.; Zhu, W.; Aceña, J.
Purser, S.; Moore, P. R.; Swallow, S.; Gouverneur, V.
L.; Soloshonok, V. A.; Izawa, K.; Liu, H. Next Generation of
Fluorine-Containing Pharmaceuticals, Compounds Currently in Phase
II–III Clinical Trials of Major Pharmaceutical Companies: New
Structural Trends and Therapeutic Areas. Chem. Rev. 2016, 116, 422–
518.
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
(5)
Le, C.; Chen, T. Q.; Liang, T.; Zhang, P.; MacMillan, D.
W. C. A radical approach to the copper oxidative addition problem:
Trifluoromethylation of bromoarenes. Science 2018, 360, 1010–1014.
(6)
Nagib, D. A.; MacMillan, D. W. C. Trifluoromethylation of
arenes and heteroarenes by means of photoredox catalysis. Nature
2011, 480, 224.
(7)
Zhu, W.; Wang, J.; Wang, S.; Gu, Z.; Aceña, J. L.; Izawa,
K.; Liu, H.; Soloshonok, V. A. Recent Advances in the
Trifluoromethylation Methodology and New CF3-Containing Drugs.
J. Fluor. Chem. 2014, 167, 37–54.
(8)
Morimoto, H.; Tsubogo, T.; Litvinas, N. D.; Hartwig, J. F.
A Broadly Applicable Copper Reagent for Trifluoromethylations and
Perfluoroalkylations of Aryl Iodides and Bromides. Angew. Chem.
Int. Ed. 2011, 50, 3793–3798.
(28) Amii, H.; Hatamoto, Y.; Seo, M.; Uneyama, K. A New
(9)
Ji, Y.; Brueckl, T.; Baxter, R. D.; Fujiwara, Y.; Seiple, I.
C−F
Bond-Cleavage
Route
for
the
Synthesis
of
B.; Su, S.; Blackmond, D. G.; Baran, P. S. Innate C-H
Trifluoromethylation of Heterocycles. Proc. Natl. Acad. Sci. 2011,
108, 14411–14415.
(10) Cho, E. J.; Senecal, T. D.; Kinzel, T.; Zhang, Y.; Watson,
D. A.; Buchwald, S. L. The palladium-catalyzed trifluoromethylation
of aryl chlorides. Science 2010, 328, 1679–1681.
(11) Müller, K.; Faeh, C.; Diederich, F. Fluorine in
pharmaceuticals: Looking beyond intuition. Science 2007, 317, 1881–
1886.
(12) Erickson, J. A.; McLoughlin, J. I. Hydrogen Bond Donor
Properties of the Difluoromethyl Group. J. Org. Chem. 1995, 60,
1626–1631.
(13) Sessler, C. D.; Rahm, M.; Becker, S.; Goldberg, J. M.;
Wang, F.; Lippard, S. J. CF2H, a Hydrogen Bond Donor. J. Am.
Chem. Soc. 2017, 139, 9325–9332.
(14) Zafrani, Y.; Yeffet, D.; Sod-Moriah, G.; Berliner, A.; Amir,
D.; Marciano, D.; Gershonov, E.; Saphier, S. Difluoromethyl
Bioisostere: Examining the “Lipophilic Hydrogen Bond Donor”
Concept. J. Med. Chem. 2017, 60, 797–804.
(15) Meanwell, N. A. Fluorine and Fluorinated Motifs in the
Design and Application of Bioisosteres for Drug Design. J. Med.
Chem. 2018, 61, 5822–5880.
(16) Meanwell, N. A. Synopsis of Some Recent Tactical
Application of Bioisosteres in Drug Design. J. Med. Chem. 2011, 54,
2529–2591.
(17) Merchant, R. R.; Edwards, J. T.; Qin, T.; Kruszyk, M. M.;
Bi, C.; Che, G.; Bao, D.-H.; Qiao, W.; Sun, L.; Collins, M. R.;
Fadeyi, O. O.; Gallego, G. M.; Mousseah, J. J.; Nuhant, P.; Baran, P.
S. Modular radical cross-coupling with sulfones enables access to sp3-
rich (fluoro)alkylated scaffolds. Science 2018, 360, 75–80.
(18) Fujiwara, Y.; Dixon, J. A.; Rodriguez, R. A.; Baxter, R. D.;
Dixon, D. D.; Collins, M. R.; Blackmond, D. G.; Baran, P. S. A New
Reagent for Direct Difluoromethylation. J. Am. Chem. Soc. 2012,
134, 1494–1497.
(19) Bacauanu, V.; Cardinal, S.; Yamauchi, M.; Kondo, M.;
Fernández, D. F.; Remy, R.; MacMillan, D. W. C. Metallaphotoredox
Difluoromethylation of Aryl Bromides. Angew. Chem. Int. Ed. 2018,
57, 12543–12548.
Octafluoro[2.2]paracyclophane. J. Org. Chem. 2001, 66, 7216–7218.
(29) Stahl, T.; Klare, H. F. T.; Oestreich, M. Main-Group Lewis
Acids for C–F Bond Activation. ACS Catal. 2013, 3, 1578–1587.
(30) Forster, F.; Metsänen, T. T.; Irran, E.; Hrobárik, P.;
Oestreich, M. Cooperative Al–H Bond Activation in DIBAL-H:
Catalytic Generation of an Alumenium-Ion-Like Lewis Acid for
Hydrodefluorinative Friedel–Crafts Alkylation. J. Am. Chem. Soc.
2017, 139, 16334–16342.
(31) Radom, L.; Hehre, W. J.; Pople, J. A. Molecular Orbital
Theory of the Electronic Structure of Organic Compounds. VII. A
Systematic Study of Energies, Conformations, and Bond Interactions.
J. Am. Chem. Soc. 1971, 93, 289–300.
(32) Saboureau, C.; Troupel, M.; Sibille, S.; Perichon, J.
Electroreductive
Coupling
of
Trifluoromethylarenes
with
Electrophiles: Synthetic Applications. J. Chem. Soc., Chem. Commun.
1989, 1138–1139.
(33) Dang, H.; Whittaker, A. M.; Lalic, G. Catalytic Activation
of a Single C–F Bond in Trifluoromethyl Arenes. Chem. Sci. 2016, 7,
505–509.
(34) Yoshida, S.; Shimomori, K.; Kim, Y.; Hosoya, T. Single
C−F Bond Cleavage of Trifluoromethylarenes with an Ortho-Silyl
Group. Angew. Chem. Int. Ed. 2016, 55, 10406–10409.
(35) Wang, H.; Jui, N. T. Catalytic Defluoroalkylation of
Trifluoromethylaromatics with Unactivated Alkenes. J. Am. Chem.
Soc. 2018, 140, 163–166.
(36) Chen, K.; Berg, N.; Gschwind, R.; König, B. Selective
Single C(sp3)–F Bond Cleavage in Trifluoromethylarenes: Merging
Visible-Light Catalysis with Lewis Acid Activation. J. Am. Chem.
Soc. 2017, 139, 18444–18447.
(37) Pearson, R. M.; Lim, C.-H.; McCarthy, B. G.; Musgrave,
C. B.; Miyake, G. M. Organocatalyzed Atom Transfer Radical
Polymerization Using N-Aryl Phenoxazines as Photoredox Catalysts.
J. Am. Chem. Soc. 2016, 138, 11399–11407.
(38) Du, Y.; Pearson, R. M.; Lim, C.-H.; Sartor, S. M.; Ryan,
M. D.; Yang, H.; Damrauer, N. H.; Miyake, G. M. Strongly
Reducing, Visible-Light Organic Photoredox Catalysts as Sustainable
Alternatives to Precious Metals. Chem. Eur. J. 2017, 23, 10962–
10968.
(20) Xiao, Y. L.; Min, Q. Q.; Xu, C.; Wang, R. W.; Zhang, X.
Nickel-Catalyzed Difluoroalkylation of (Hetero)Arylborons with
(39) Boyington, A. J.; Seath, C. P.; Zearfoss, A. M.; Xu, Z.; Jui,
N. T. Catalytic Strategy for Regioselective Arylethylamine Synthesis.
J. Am. Chem. Soc. 2019, 141, 4147–4153.
ACS Paragon Plus Environment