H. M. Chawla et al. / Tetrahedron Letters 54 (2013) 2766–2769
2769
References and notes
1. (a) Chawla, H. M.; Pant, N.; Kumar, S.; Kumar, N.; St. Black david, C. Calixarene –
Based Materials for Chemical Sensors In Chemical Sensors Fundamentals of
Sensing Materials; Korotcenkov, G., Ed.; Momentum Press: New York, 2010; Vol.
3, p 300; (b) Joseph, R.; Rao, C. P. Chem. Rev. 2011, 111, 4658–4702; (c) Chawla,
H. M.; Shukla, R.; Pandey, S. Tetrahedron Lett. 2012, 53, 2996–2999; (d)
Shaabani, B.; Shaghaghi, Z.; Khandar, A. A. Spectrochim. Acta A 2012, 98, 81–85;
(e) Sap, A.; Tabakci, B.; Yilmaz, A. Tetrahedron 2012, 68, 8739–8745; (f) Wang,
N.-J.; Sun, C.-M.; Chung, W. S. Sens. Actuators, B 2012, 171–172, 984–993; (g)
Echabaane, M.; Rouis, A.; Bonnamour, I.; Quada, H. B. Mater. Sci. Eng., C 2012,
32, 1218–1221; (h) Pandey, S.; Azam, A.; Pandey, S.; Chawla, H. M. Org. Biomol.
Chem. 2009, 7, 269–279.
2. (a) Kumar, A.; Kumar, V.; Neeraj; Upadhyay, K. K.; Roychowdhury, P. K. J. Mol.
Struct. 2013, 1035, 174–182; (b) Wang, M.; Xu, Z.; Wang, X.; Cui, J. Dyes Pigm.
2013, 96, 333–337; (c) Hu, S.; Zhang, S.; Hu, Y.; Tao, Q.; Wu, A. Dyes Pigm. 2013,
96, 509–515; (d) Valeur, B.; Leray, I. Coord. Chem. Rev. 2000, 205, 3–40.
3. (a) Haung, J.; Xu, Y.; Qian, X. Dalton Trans. 2009, 1761–1766; (b) Kim, H. J.; Kim,
S. H.; Anh, L. N.; Lee, J. H.; Lee, C.; Kim, J. S. Tetrahedron Lett. 2009, 50, 2782–
2786.
4. (a) Udhayakumari, D.; Saravanamoorthy, S.; Velmathi, S. Mater. Sci. Eng., C
2012, 32, 1878–1882; (b) Maity, D.; Govindaraju, T. Inorg. Chem. 2011, 50,
11282–11284.
Figure 5. Comparative study of molecular receptor 8 in THF of peak at 443 nm in
the presence of 7.5 equiv of various metal ions + 7.5 equiv of Cu2+ by exciting at
327 nm.
5. (a) de Silva, A. P.; Fox, D. B.; Huxley, A. J. M.; Moody, T. S. Coord. Chem. Rev.
2000, 205, 41–57; (b) Mahendra, N.; Gangaiya, P.; Subramaniam, S.;
Narayanaswamy, R. Sens. Actuators, B 2003, 90, 113–118; (c) Xiang, Y.; Tong,
A. J.; Jin, P. Y.; Ju, Y. Org. Lett. 2006, 8, 2863–2866; (d) Georgopoulos, P. G.; Roy,
A.; Yonone-Lioy, M. J.; Opiekun, R. E.; Lioy, P. J. J. Toxicol. Environ. Health Part B
2001, 4, 341–394; (e) Koval, I. A.; Gamez, P.; Belle, C.; Selmeczi, K.; Reedijk, J.
Chem. Soc. Rev. 2006, 35, 814–840; (f) Zhang, L.; Zhu, J.; Ai, J.; Zhou, Z.; Jia, X.;
Wang, E. Biosens. Bioelectron. 2013, 39, 268–273; (g) He, G.; Zhang, X.; He, C.;
Zhao, X.; Duan, C. Tetrahedron 2010, 66, 9762–9768; (h) Viswanathan, K. Sens.
Actuators, A 2012, 175, 15–18; (i) Kaur, P.; Sareen, D.; Singh, K. Talanta 2012, 83,
1695–1700; (j) Xu, Z.; Zhang, L.; Guo, R.; Xiang, T.; Wu, C.; Zheng, Z.; Yang, F.
Sens. Actuators, B 2011, 156, 546–552; (k) Tang, L.; Li, F.; Liu, M.; Nandhakumar,
R. Spectrochim. Acta A 2011, 78, 1168–1172.
6. (a) Li, G.; Xu, Z.; Chen, C.; Huang, Z. Chem. Commun. 2008, 1774–1776; (b)
Aksuner, N.; Henden, E.; Yilmaz, I.; Cukurovali, A. Dyes Pigm. 2009, 83, 211–
217; (c) Joseph, R.; Ramanujam, B.; Acharya, A.; Rao, C. P. Tetrahedron Lett.
2009, 50, 2735–2739; (d) Liang, Z.; Liu, Z.; Jiang, L.; Gao, Y. Tetrahedron Lett.
2007, 48, 1629–1632; (e) Baghel, G. S.; Ramanujam, B.; Rao, C. P. J. Photochem.
Photobiol. A Chem. 2009, 202, 172–177.
7. Kumar, S.; Luxami, V.; Kumar, A. Org. Lett. 2008, 10, 5549–5552.
8. Chawla, H. M.; Hundal, G.; Singh, S. P.; Upreti, S. Cryst. Eng. Comm. 2007, 9, 119–
122.
9. (a) Gutsche, C. D. In Calixarenes: Monographs in Supramolecular Chemistry;
Stoddart, J. F., Ed.; Royal Society of Chemistry: London, 1989; (b)Calixarene: An
Introduction; Gutsche, C. D., Ed., 2nd ed.; Royal Society of Chemistry: Cambridge,
2008.
10. Narayanaswamy, N.; Govindaraju, T. Sens. Actuators, B 2012, 161, 304–310.
11. Padilla-Martinez, I. I.; Martinez-Martinez, F. J.; Guillen-Hernandez, C. I.; Chaparro-
Huerta, M.; Caberera-Perez, L. C.; Gomez-Castro, C. Z.; Lopez-Romero, B. A.;
Garcia-Baez, E. V. ARKIVOC 2005, 205, 401–415.
12. (a) Iqbal, M.; Mangiafico, T.; Gutsche, C. D. Tetrahedron 1987, 43, 4917–4930;
(b) Gutsche, C. D.; Iqbal, M. Org. Synth. 1990, 68, 234; (c) Gutsche, C. D.; Iqbal,
M.; Steward, D. J. Org. Chem. 1986, 51, 742–745; (d) Chawla, H. M.; Shrivastava,
R.; Sahu, S. N. New J. Chem. 2008, 32, 1999–2005; (e) Chawla, H. M.; Pant, N.;
Srivastava, B.; Upreti, S. Org. Lett. 2006, 8, 2237–2240.
13. Procedure for the synthesis of 8: To a solution of bis formyl calix[4]arene (6) in
ethanol was added 1 and a catalytic amount of acetic acid. The reaction
mixture was refluxed for 24 h. After completion of the reaction (TLC), the
precipitate was filtered and washed with water. The structure of 4 was
confirmed by 1H NMR and 13C NMR spectra as well as ESI MS analysis.
14. Analytical data for 8: White solid; melting point: 340 °C (decomposed); UV
(kmax, THF): 327 nm. IR (KBr pellet, cmÀ1): 3445, 1682, 1600, 756; 1H NMR
(300 MHz, DMSO-d6, d in ppm): 12.065 (s, 2H, NH, D2O exchangeable), 10.704
(s, 2H, NH, D2O exchangeable), 8.440 (s, 2H, @CH), 8.12 (s, 2H, OH, D2O
exchangeable), 7.628(d, 2H, ArH1), 7.520(s, 4H, ArH), 7.311 (d, 2H, ArH1), 6.916
(s, 4H, ArH), 4.754 (s, 4H, –OCH2), 4.252–4.229 (m, 8H, –CH2+–OCH2CH3), 3.517
(dd, 4H, CH2), 1.266 (t, 6H, –CH3), 0.999 (s, 18H, –C(CH3)3); 13C NMR (75 MHz,
DMSO-d6, d in ppm): 168.89, 158.55, 155.58, 155.14151.78, 150.49, 146.75,
131.80, 129.94, 128.79, 128.01, 126.14, 125.71, 124.69, 71.90, 60.84, 33.69,
30.93, 30.83, 13.94; HRMS (ESI-MS) m/z: calcd 1031.4161, found 1031.4173
(M+Na+).
calculated to be 3.92 Â 104 MÀ1 (Inset Fig. 3). To calculate associa-
tion constant,17 a plot of log (F0ÀF/F) versus log [Cu2+] yielded the
value of K as 1.655 Â 106 MÀ1 which represents efficient binding of
Cu2+ and 8 (SI, Fig. 10).
Under identical conditions, addition of Cu2+ to 7 resulted in 80%
quenching of the fluorescence intensity of the synthesized receptor
(SI, Fig. 5) with less Ksv and binding constant (1.981 Â 104 MÀ1) as
compared to 8 (SI, Figs. 6 and 11) revealing superiority of 8 over 7
for binding Cu2+
.
The practical application of synthesized receptor 8 as fluores-
cence ‘turn off’ probe for Cu2+ was examined by recording its
fluorescence response to Cu2+ in the presence of other competing
ions. As shown in Figure 5, most of the competing ions such as
Co2+, Hg2+, Zn2+, Ni2+, Cd2+, Mn2+, Fe3+, Ag+, exhibited negligible
interference in the detection of Cu2+ in the presence of other metal
ions. Thus 8 can be used for selective detection of Cu2+ even in the
presence of these competing ions. The same selectivity was deter-
mined by UV–Vis spectroscopic studies (SI, Fig. 8).
The binding of Cu2+ with receptor 8 could not be monitored
through NMR titrations owing to the paramagnetic nature of
copper which leads to the broadening of peaks.
In conclusion, we have designed, synthesized and evaluated
novel calix[4]arene based oxalylamide receptors (7, 8) as chemo-
sensors for Cu2+ ions through fluorescence and chromogenic
probes. The detection has been found to be selective in the micro-
molar range without interference from other competing ions in
coexisting systems. It appears that upper rim oxalylamido looping
of the calixarene scaffold is advantageous for Cu2+ recognition.
Acknowledgments
P.G. and R.S. thank UGC and CSIR, India for a research fellow-
ship. Financial assistance from DST, MoFPI, MoEF, and MoRD is
gratefully acknowledged.
15. Lakowicz, J. R. Principles of Fluorescence Spectroscopy, 3rd ed.; Kluwer Academics/
Plenum: New York, 2006.
16. Mashraqui, S. H.; Ghorpade, S. S.; Tripathi, S.; Britto, S. Tetrahedron Lett. 2012,
53, 765–768.
Supplementary data
Supplementary data associated with this article can be found, in
17. (a) Mishra, B.; Barik, A.; Priyadarsini, K. I.; Mohan, H. J. Chem. Sci. 2005, 117, 641–
647; (b) Ding, J.; Yuan, L.; Gao, L.; Chen, J. J. Lumin. 2012, 132, 1987–1993.