R. W. Saalfrank et al.
FULL PAPER
Compound [FeIII3O(L)2(OBz)4]OBz (5): 3 (175 mg, 0.1 mmol), so-
dium benzoate (2.30 g, 16 mmol), and chloroform (80 mL). Yield:
178 mg (72%) dark-violet microcrystalline solid from CHCl3 by
vapor diffusion of diethyl ether; m.p. Ͼ250 °C (decomp.). IR
months with occasional opening). We suspect that aging of
Fe(OAc)2 leads to the formation of oligonuclear iron species.
This assumption is supported by the fact that reaction of ten-
membered iron wheel [FeIII10(OAc)10(OMe)20] with HL (1)
yields a mixture of [FeIIFeIII2O(L)3(OAc)3] (2), and [FeIII3O-
(L)2(OAc)4]2O (3, main product). The FeII ions in 2 are gener-
ated by reduction of FeIII by methanol. We generated
[FeIII10(OAc)10(OMe)20] in Ն80% yield simply by stirring
Fe(OAc)2 or FeCl2 together with NaOAc in air at 20 °C in
methanol for 10 h. The X-ray crystallographic data matched
those reported in ref.[10]
(CHBr ): ν = 3127, 3111, 2922, 1615, 1596, 1557, 1539, 1504 cm–1.
˜
3
FAB-MS (m-NBA): m/z (%)
=
1237 (3) [M]+, 1116 (91)
[M – OBz]+, 1013 (32) [M – L]+, 995 (100) [M – 2 OBz]+, 892
(60) [M – OBz – L]+, 874 (41) [M – 3 OBz]+, 771 (73) [M – 2 OBz –
L]+, 650 (76) [M – 3 OBz – L]+, 529 (35) [M – 4 OBz – L]+.
Compound [FeIIFeIII2O(L)3(OBz)3] (6): 5 (247 mg, 0.2 mmol), 1
(45 mg, 0.2 mmol), sodium iodide (50 mg, 0.33 mmol), and chloro-
form (50 mL). Yield: 129 mg (53%) dark-violet crystals from
CHCl3 by vapor diffusion of diethyl ether. For analytical data see
ref.[1]
Compound [NiIIFeIII2O(L)3(OAc)3] (7): 3 (123 mg, 0.07 mmol),
nickel acetate tetrahydrate (174 mg, 0.7 mmol), and chloroform
(30 mL). Yield: 68 mg (47%) brown precipitate from CHCl3/n-pen-
tane (5 mL/30 mL; once repeated). For analytical data see ref.[1]
Compound [NiIIFeIII2O(L)3(OBz)3] (8): 7 (52 mg, 0.05 mmol), so-
dium benzoate (432 mg, 3 mmol), and chloroform (10 mL). Yield:
42 mg (68%) brown crystals from CHCl3 by vapor diffusion of di-
ethyl ether. For analytical data see ref.[1]
Compounds [FeIII3O(L)2(OBzBr)4]OBzBr (9), [FeIIFeIII2O(L)3-
(OBzBr)3] (10): A suspension of iron(ii) acetate (348 mg, 2 mmol)
and sodium 4-bromobenzoate (6.70 g, 30 mmol) in chloroform
(300 mL) was stirred under nitrogen for 2 h. After addition of HL
(1) (534 mg, 2.4 mmol), the pale violet reaction mixture was stirred
in air for a further 48 h. After removal of the excess metal salt by
filtration through a pad of Celite, and concentration to dryness, the
mixture of 9 and 10 (ratio of ca. 6:1) was purified by fractionizing
crystallization from CH2Cl2/ether, yielding dark-violet crystals of
[4]
For further iron acetate complexes, see: a) C. T. Dziobkowski,
J. T. Wrobleski, D. B. Brown, Inorg. Chem. 1981, 20, 671–678;
b) C. J. Harding, R. K. Henderson, A. K. Powell, Angew.
Chem. 1993, 105, 583–585, Angew. Chem. Int. Ed. 1993, 32,
570–572; c) C. A. Christmas, H.-L. Tsai, L. Pardi, J. M. Kessel-
man, P. K. Gantzel, R. K. Chadha, D. Gatteschi, D. F. Harvey,
D. N. Hendrickson, J. Am. Chem. Soc. 1993, 115, 12483–12490;
d) I. Shweky, L. E. Pence, G. C. Papaefthymiou, R. Sessoli,
J. W. Yun, A. Bino, S. J. Lippard, J. Am. Chem. Soc. 1997, 119,
1037–1042; e) S. J. Lippard, Angew. Chem. 1988, 100, 353–371;
Angew. Chem. Int. Ed. Engl. 1988, 27, 344–361.
[FeIII3O(L)2(OAc)4]Cl
(4):
[5]
Crystal
data
for
C24H24ClFe3N6O11S4·3CHCl3·(C2H5)2O, M = 1335.96; crystal
dimensions 0.30×0.10×0.10 mm; monoclinic, space group C2/
c, a = 17.961(4) Å, b = 15.158(3) Å, c = 19.875(4) Å, β =
99.57(3)°, V = 5336(2) Å3; Z = 4; F(000) = 1828, ρcalcd.
=
1.663 g/cm3; Nonius KappaCCD diffractometer, Mo-Kα radia-
tion (λ = 0.71073 Å); T = 173(2) K; graphite monochromator;
θ range 2.30° Ͻ θ Ͻ 27.47°; section of the reciprocal lattice:
–23 Յ h Յ 23, –18 Յ k Յ 19, –25 Յ l Յ 25; of 11363 measured
reflections, 6097 were independent and 4434 with I Ͼ 2σ(I);
linear absorption coefficient 1.053 mm–1. The structure was
solved by direct methods using SHELXS-97 and refinement
with all data (309 parameters) by full-matrix least squares on
F2 using SHELXL97; all non-hydrogen atoms were refined an-
isotropically; R1 = 0.0541 for I Ͼ 2σ(I) and wR2 = 0.1651 (all
data); largest peak (0.748 eÅ–3) and hole (–1.226 eÅ–3).[6,7]
9. Yield: 348 mg (32%); m.p. Ͼ250 °C (decomp.). IR (CHBr ): ν =
˜
3
3107, 2920, 1589, 1554, 1504, 1411 cm–1. FAB-MS (m-NBA): m/z
(%) = 1656 (2) [M + Na]+, 1431 (80) [M – OBzBr]+, 1408 (14) [M –
L]+, 1232 (100) [M – 2 OBzBr]+, 1207 (39) [M – L – OBzBr]+, 1032
(51) [M – 3 OBzBr]+, 1008 (49) [M – L – 2 OBzBr]+, 831 (23) [M –
4 OBzBr]+, 808 (63) [M – L – 3 OBzBr]+, 752 (24) [M – Fe – L –
3 OBzBr]+. Complex 10 was characterized by FAB-MS and was
not further purified: FAB-MS (m-NBA): m/z (%) = 1458 (65)
[M + H]+, 1256 (100) [M – OBzBr]+, 1058 (31) [M – OBzBr]+.
[6]
[7]
a) G. M. Sheldrick, C. Krüger, P. Goddard, Crystallographic
Computing 3, Oxford University Press, Oxford 1985, p. 175; b)
G. M. Sheldrick, SHELXL-97, Program for Crystal Structure
Refinement, University of Göttingen 1997.
CCDC-213507 (4), -250374 (9), and -213506 [FeIII3O(L)3-
[9]
(OBz)3]I3 contain the supplementary crystallographic data
for this paper. These data can be obtained free of charge
from The Cambridge Crystallographic Data Centre via
www.ccdc.cam.ac.uk/data_request/cif.
[FeIII3O(L)2(OBzBr)4]OBzBr
(9):
[8]
Crystal
data
for
Acknowledgments
C51H32Br5Fe3N6O13S4·2.5CH2Cl2, M = 1844.48; crystal dimen-
sions 0.25×0.20×0.20 mm; monoclinic, space group P21/c, a
This work was supported by the Deutsche Forschungsgemeinschaft
SA 276/26-1, SFB 583, GK 312, SPP 1137, the Bayerisches Lang-
zeitprogramm “Neue Werkstoffe” and the Fonds der Chemischen
Industrie. The generous allocation of X-ray facilities by Professor
D. Sellmann, Institut für Anorganische Chemie, Universität Er-
langen-Nürnberg, cyclovoltammetric measurements by Professor J.
Daub and Dr. Ch. Trieflinger, Institut für Organische Chemie, Uni-
versität, Regensburg, and Mössbauer measurements by Dipl.-Phys.
L. Böttger, Institut für Physik der Medizinischen Universität
Lübeck, are also gratefully acknowledged.
=
19.506(4) Å,
b
=
16.882(3) Å,
c
=
21.112(4) Å,
β
=
=
105.74(3)°, V = 6691(2) Å3; Z = 4; F(000)= 3624, ρcalcd.
1.831 g/cm3; Nonius KappaCCD diffractometer, Mo-Kα radia-
tion (λ = 0.71073 Å); T = 173(2) K; graphite monochromator;
θ range 2.89° Ͻ θ Ͻ 25.05°; section of the reciprocal lattice:
–23 Յ h Յ 23, –18 Յ k Յ 20, –25 Յ l Յ 25; of 21421 measured
reflections, 11780 were independent and 8118 with I Ͼ 2σ(I);
linear absorption coefficient 4.015 mm–1. The structure was
solved by direct methods using SHELXS-97 and refinement
with all data (842 parameters) by full-matrix least squares on
F2 using SHELXL97; all non-hydrogen atoms were refined an-
isotropically; R1 = 0.0983 for I Ͼ 2σ(I) and wR2 = 0.2856 (all
data); largest peak (2.954 eÅ–3) and hole (–1.966 eÅ–3).[6,7]
[1] R. W. Saalfrank, A. Scheurer, U. Reimann, F. Hampel, C. Trie-
flinger, M. Büschel, J. Daub, A. X. Trautwein, V. Schünemann,
V. Coropceanu, Chem. Eur. J., submitted.
[2] R. W. Saalfrank, U. Reimann, M. Göritz, F. Hampel, A.
Scheurer, F. W. Heinemann, M. Büschel, J. Daub, V. Schüne-
mann, A. X. Trautwein, Chem. Eur. J. 2002, 8, 3614–3619.
[3] Fresh Fe(OAc)2 (Supplier Aldrich 51,793-3; 99.995%); aged
Fe(OAc)2 (kept under nitrogen in a Schlenk tube for 6–9
[9]
When 5 was treated with a fortyfold excess of sodium iodide
in the presence of air after workup some crystals of all-iron(iii)
complex [FeIII3O(L)3(OBz)3]I3 were isolated.[7] Crystal data for
[FeIII3O(L)3(OBz)3]I3: C45H33Fe3I3N9O10S6·3CHCl3,
M
=
1958.52; crystal dimensions 0.38×0.15×0.06 mm; triclinic,
space group P1, a = 14.2184(3) Å, b = 16.2989(3) Å, c =
16.6062(5) Å, α = 97.223(2)°, β = 106.855(2)°, γ = 110.318(2)°,
¯
1386
© 2005 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
Eur. J. Inorg. Chem. 2005, 1383–1387