the millimolar range of K1 concentration. Thus, the high K1/
Na1 selectivity under physiological conditions combined with its
good sensitivity make this system a suitable K1-sensor for
analytical applications.
References
1
(a) Chemosensors of Ion and Molecular Recognition, ed. J.-P.
Desvergne and A. W. Czarnik, NATO ASI Series, Kluwer Aca-
demic, Dordrecht, 1997, vol. C492; (b) A. P. de Silva, H. Q. N.
Gunaratne, T. Gunnlaugsson, A. J. M. Huxley, C. P. McCoy, J. T.
Rademacher and T. E. Rice, Chem. Rev., 1997, 97, 1515; (c) B.
Valeur and I. Leray, Coord. Chem. Rev., 2000, 205, 3–40.
B. Valeur, Molecular Fluorescence. Principles and Applications,
Wiley-VCH, Weiheim, 2002.
2
3
4
A. Minta and R. Y. Tsien, J. Biol. Chem., 1989, 264, 19449.
W. S. Xia, R. H. Schmehl and C. J. Li, J. Am. Chem. Soc., 1999,
121, 5599.
5
(a) D. B. Lehn, J. P. Sauvage and J. Blanzat, Tetrahedron, 1973,
29, 1629; (b) A. P. de Silva, H. Q. N. Gunaratne and K. R. A. S.
Sandanayake, Tetrahedron Lett., 1990, 31, 5193; (c) R. Crossley,
Z. Goolamali and P. G. Sammes, J. Chem. Soc., Perkin Trans. 2,
1994, 1615; (d) H. He, M. A. Mortellaro, M. J. P. Leiner, R. J.
Fraatz and J. K. Tusa, J. Am. Chem. Soc., 2003, 125, 1468.
(a) C. D. Gutsche, Calixarenes Revisited, The Royal Society of
Chemistry, Cambridge, 1998; (b) Calixarenes 2001, ed. Z. Asfari,
Fig. 7 Fluorescence intensity response of 1 (6 ꢂ 10ꢁ7 mol Lꢁ1) in
water–ethanol (1 : 3, v : v), lexc ¼ 475 nm, lem ¼ 515 nm. Potassium,
sodium concentration are (Na1/K1 in 10ꢁ3 mol Lꢁ1): (a) 0/0; (b) 44/0;
(c) 44/0.52; (d) 44/1.05; (e) 44/1.57; (f) 44/2.1; (g) 44/2.62; (h) 44/3.15;
(i) 44/3.67; (j) 44/4.2; (k) 44/4.72.
6
7
V. Bohmer, J. Harrowfield and J. Vicens, Kluwer Academic,
¨
Dordrecht, 2001.
(a) A. Casnati, A. Pochini, R. Ungaro, C. Bocchi, F. Ugozzoli,
R. J. M. Egberink, H. Strujik, R. Lugtenberg, F. de Jong and
D. N. Reinhoudt, Chem. Eur. J., 1996, 2, 436; (b) F. Arnaud-Neu,
Z. Asfari, B. Souley and J. Vicens, New J. Chem., 1996, 20, 453;
(c) J. S. Kim, W. K. Lee, D. Y. Ra, Y. I. Lee, W. K. Choi, K. W.
Lee and W. Z. Oh, Microchem. J., 1998, 59, 464; (d) K. N. Koh,
K. Araki, S. Shinkai, Z. Asfari and J. Vicens, Tetrahedron Lett.,
1995, 36, 6095; (e) S. K. Kim, S. H. Lee, J. Y. Lee, J. Y. Lee, R. A.
Bartsch and J. S. Kim, J. Am. Chem. Soc., 2004, 126, 16499.
J. H. Bu, Q. Y. Zheng, C. F. Chen and Z. T. Huang, Org. Lett.,
2004, 6, 3301.
because of self-aggregation, as previously reported,25 that
alters the photophysical properties. However, a mixture EtOH
–H2O (3 : 1 v/v)) was found to be still suitable, in spite of the
decrease in affinity for K1. It should be noticed that in contrast
to the previously system described by Kim et al.9,10 with a
tertiary amine linked to a calix[4]azacrown-5 our system
composed of a dialkylaniline with a boron-dipyrromethene as
an acceptor group in the para position exhibits a much lower
pKa,21c which enables application under neutral conditions.
The titration curve remains consistent with the formation of
two successive [1 : 1] and [2 : 1] complexes (log K11 ¼ 2.48 and
log K21 ¼ 1.25).
8
9
J. S. Kim, O. J. Shon, J. W. Ko, M. H. Cho, I. Y. Yu and
J. Vicens, J. Org. Chem., 2000, 65, 2386.
10 J. S. Kim, O. J. Shon, J. A. Rim, S. K. Kim and J. Yoon, J. Org.
Chem., 2002, 67, 2348.
11 (a) E. Vos de Wal, J. Pardoen, J. A. Van Koeveringe and J.
Lugtenburg, Recl. Trav. Chim. Pays-Bas, 1977, 96, 306; (b) J.
Karolin, L. B.-A. Johansson, L. Strandberg and T. Ny, J. Am.
Chem. Soc., 1994, 116, 7801; (c) T. Werner, C. Huber, S. Heinl, M.
Kollmannsberg, J. Daub and O. S. Wolfbeis, Fresenius’ J. Anal.
Chem., 1997, 359, 150.
12 M. Kollmannsberger, K. Rurack, U. Resch-Genger and J. Daub,
J. Phys. Chem. A, 1998, 102, 10211.
13 H. Gampp, M. Maeder, C. J. Meyer and A. D. Zuberbuhler,
¨
Talanta, 1985, 32, 95–101.
14 J. C. Duff, J. Chem. Soc., 1945, 276.
15 I. Leray, Z. Asfari, J. Vicens and B. Valeur, J. Chem. Soc., Perkin.
Trans. 2, 2002, 1429.
16 P. Toele, H. Zhang, C. Trieflinger, J. Daub and M. Glasbeek,
Chem. Phys. Lett., 2003, 368, 66.
17 (a) M. Ballester and J. Riera, Spectrochim. Acta A, 1967, 23,
51533; (b) S. Kapelle, W. Rettig and R. Lapouyade, Chem. Phys.
Lett., 2001, 348, 416; (c) J. P. Malval, J. P. Morand, R. La-
Then, a test of the analytical performance of 1 for the
determination of K1 in extracellular conditions (serum or
whole blood) was achieved. In such conditions, the concentra-
tion of K1 is about 5 mM, and that of Na1 about 150 mM.
Thus, considering a biological sample that is diluted with an
ethanol solution (containing 1 at the appropriate concentra-
tion) by a factor of 4, the question arises as to whether one can
detect about 1 mM of K1 in the presence of about 40 mM of
Na1. Fig. 7 shows that this is indeed possible: increasing the
concentration of Na1 from 0 to 44 mM has almost no effect on
the fluorescence intensity, whereas addition of K1 from 0 to
5 mM in the presence of 44 mM Na1 leads to a quasi-linear
increase in fluorescence intensity. This demonstrates the sensi-
tivity and selectivity of 1 towards K1 at physiological concen-
trations.
pouyade, W. Rettig, G. Jonusauskas, J. Oberle, C. Trieflinger and
´
J. Daub, Photochem. Photbiol. Sci., 2004, 3, 939.
18 D. Rehm and A. Weller, Isr. J. Chem., 1970, 8, 259.
19 D. R. Worall, S. L. Williams, F. Wilkinson, J. E. Crossley, H.
Bouas-Laurent and J. P. Desvergne, J. Phys. Chem., 1999, 109,
9255.
20 R. Y. Lai and A. J. Bard, J. Phys. Chem. B, 2003, 107, 5036.
21 (a) M. Kollmannsberger, K. Rurack, U. Resch-Genger, W. Rettig
and J. Daub, Chem. Phys. Lett., 2000, 329, 363; (b) K. Rurack, M.
Kollmannsberger, U. Resch-Genger and J. Daub, J. Am. Chem.
Soc., 2000, 122, 968; (c) K. Rurack, M. Kollmannsbergerb and
J. Daub, New J. Chem., 2001, 25, 289.
22 K. A. Connors, Binding constants. The measurement of Molecular
Complex Stability, John Wiley & Sons, New York, 1987.
23 HYPERCHEM, v. 7.03, Hypercube, Inc., Gainesville, FL, 2002.
24 I. Leray, Z. Asfari, J. Vicens and B. Valeur, J. Fluoresc., 2004, 14,
451.
Conclusion
The synthesis of a new fluoroionophore associating a 1,3 alter-
nate calix[4] azacrown-5 and a boron–dipyrromethene as a
fluorophore is reported. The ionophore, which possesses two
binding sites whose size perfectly fits the potassium cation,
exhibits an excellent K1/Na1 selectivity in acetonitrile, ethanol,
and ethanol–water mixtures. Cation coordination to the amino
group blocks the efficient CT mechanism, which leads to a strong
fluorescence enhancement of the LE band. The enhancement is
drastically larger with the [2 : 1] species (Fluorescence Enhance-
ment Factor ¼ 154 in ethanol); this result is consistent with a
closer proximity between the cation and the nitrogen atom of the
aniline moiety. Fluorescence signal amplification is all the more
improved as the [2 : 1] complex is produced which is the case in
25 F. Bergstrom, I. Mikhalyov, P. Haggof, R. Wortmann, T. Ny and
¨
L. B. A. Johansson, J. Am. Chem. Soc., 2001, 124, 196.
¨
¨
1094
N e w J . C h e m . , 2 0 0 5 , 2 9 , 1 0 8 9 – 1 0 9 4