these cases suffer from inherent drawbacks: For ex-
ample, the reduction method requires the presence of
electronically and/or stereochemically differentiated aryls
for optimum results. The method of aryl transfer reaction
seems more suitable for chiral induction because of the
large steric and electronic differences between an aryl
group and a hydrogen atom on an aldehyde substrate,
and great progress has been achieved in this field.4-6
Fu et al. first reported, in 1997, the addition of salt-
free Ph2Zn to p-chlorobenzaldehyde using a planar-chiral
azoferrocene ligand with moderate enantioselectivity.4a
Pu and co-workers reported that performing the addition
reaction at a low concentration of substrate improved the
enantioselectivity dramatically, using chiral 3,3′-diaryl
binaphthol as a ligand.4b Recently, Bolm et al. and, later,
Chan et al. have reported an excellent protocol wherein
the aryl transfer reagent was generated by mixing
arylboronic acids, a substantially more stable and less
expensive reagent than diphenylzinc, with diethylzinc.6,4g
With the intention to facilitate the workup as well as the
recovery and reuse of the catalyst in asymmetric syn-
thesis, we have now focused on the immobilization of a
chiral ligand by anchoring it onto a polymeric support.7
Recently, several catalytically active dendrimers have
been reported that perform with very high enantioselec-
tivities in the catalytic enantioselective addition of di-
ethylzinc to both aromatic and aliphatic aldehydes.8,9
However, in the field of asymmetric phenyl transfer from
organozinc reagents to aldehydes, to the best of our
knowledge, a dendritic system has not been widely
investigated except for a few examples.4b,5f Since previous
Highly Effective and Recyclable Dendritic
Ligands for the Enantioselective Aryl
Transfer Reactions to Aldehydes
Xin yuan Liu, Xiao yu Wu, Zhuo Chai, Yong yong Wu,
Gang Zhao,* and Shi zheng Zhu*
Laboratory of Modern Synthetic Organic Chemistry,
Shanghai Institute of Organic Chemistry, Chinese Academy
of Sciences, 354 Fenglin Lu, Shanghai 200032, P. R. China
Received May 19, 2005
A series of chiral pyrrolidinylmethanol-based dendritic
ligands were synthesized for application in enantioselective
aryl transfer reactions to aldehydes with the (ArBO)3/ZnEt2
system in up to 98% ee.
(5) (a) Bolm, C.; Mun˜iz, K. Chem. Commun. 1999, 1295. (b) Bolm,
C.; Hermanns, N.; Hildebrand, J. P.; Mun˜iz, K. Angew. Chem., Int.
Ed. 2000, 39, 3465; Angew. Chem. 2000, 112, 3607. (c) Bolm, C.;
Kesselgruber, M.; Hermanns, N.; Hildebrand, J. P. Angew. Chem., Int.
Ed. 2001, 40, 1488; Angew. Chem. 2001, 113, 1536. (d) Bolm, C.;
Kesselgruber, M.; Grenz, A.; Hermanns, N.; Hildebrand, J. P. New J.
Chem. 2001, 25, 13. (e) Bolm, C.; Hermanns, N.; Kesselgruber, M.;
Hildebrand, J. P. J. Organomet. Chem. 2001, 624, 157. (f) Bolm, C.;
Hermanns, N.; Claâen, A.; Mun˜iz, K. Bioorg. Med. Chem. Lett. 2002,
12, 1795. (g) Rudolph, J.; Rasmussen, T.; Bolm, C. and Norrby, P.-O.
Angew. Chem., Int. Ed. 2004, 42, 3002. (h) Rudolph, J.; Bolm, C.;
Norrby, P.-O. J. Am. Chem. Soc. 2005, 127, 1548. (i) For a review on
asymmetric arylation reactions, see: Bolm, C.; Hildebrand, J. P.;
Mun˜iz, K.; Hermanns, N. Angew. Chem., Int. Ed. 2001, 40, 3284;
Angew. Chem. 2001, 113, 3382.
Optically active diarylmethanols are versatile and
important chiral building blocks for therapeutically
important medicines such as (R)-neobenodine, (R)-or-
phenadrine, or (S)-carbinoxamine.1 Two general ap-
proaches aimed at the enantioselective synthesis of these
compounds have been reported: the enantioselective
reduction of prochiral ketones2,3 and asymmetric aryl
transfers onto aromatic aldehydes.4,5 However, some of
(6) (a) Bolm, C.; Rudolph, J. J. Am. Chem. Soc. 2002, 124, 14850.
(b) Rudolph, J.; Hermanns, N.; Bolm, C. J. Org. Chem. 2004, 69, 3997.
(c) Rudolph, J.; Schmidt, F.; Bolm, C. Adv. Synth. Catal. 2004, 346,
867. (d) Rudolph, J.; Schmidt, F.; Bolm, C. Synthesis 2005, 5, 840. (e)
O¨ zcubukcu, S.; Schmidt, F.; Bolm, C. Org. Lett. 2005, 7, 1407.
(7) (a) DeVos, D. E., Vankelecom, I. F. J., Jacobs, P. A., Eds. Chiral
Catalyst Immobilization and Recycling; Wiley-VCH: Weinheim, 2000.
(b) Clapham, B.; Reger, T. S.; Janda, K. D. Tetrahedron 2001, 57, 4637.
(c) Bra¨se, S.; Dahmen, S. Synthesis 2001, 1431.
(1) (a) Harms, A. F.; Nauta, W. T. J. Med. Pharm. Chem. 1960, 2,
57. (b) Sperber, N.; Papa, D.; Schwenk, E.; Sherlock, M. J. Am. Chem.
Soc. 1949, 71, 887.
(2) (a) Ohkuma, T.; Koizumi, M.; Ikehira, H.; Yokozawa, T.; Noyori,
R. Org. Lett. 2000, 2, 659. (b) Corey, E. J.; Helal, C. J. Tetrahedron
Lett. 1995, 36, 9153. (c) Corey, E. J.; Helal, C. J. Tetrahedron Lett.
1996, 37, 4837. (d) Corey, E. J.; Helal, C. J. Tetrahedron Lett. 1996,
37, 5675. (e) General review: Corey, E. J.; Helal, C. J. Angew. Chem.,
Int. Ed. 1998, 37, 1986; Angew. Chem. 1998, 110, 2092. (f) General
review: Noyori, R.; Ohkuma, T. Angew. Chem., Int. Ed. 2001, 40, 40;
Angew. Chem. 2001, 113, 40. (g) See also: Noyori, R. Angew. Chem.,
Int. Ed. 2002, 41, 2008; Angew. Chem. 2002, 114, 2108.
(8) Blom, C.; Derrien, N.; Seger, A. Synlett 1996, 387.
(9) (a) Sato, I.; Shibata, T.; Ohtake, K.; Kodaka, R.; Hirokawa, Y.;
Shirai, N.; Soai, K. Tetrahedron Lett. 2000, 41, 3123. (b) Hu, Q. S.;
Pugh, V.; Sabat, M.; Pu, L. J. Org. Chem. 1999, 64, 7528. (c) Fan, Q.
H.; Liu, G. H.; Chen, X. M.; Deng G. J.; Chan, A. S. C. Tetrahedron:
Asymmetry 2001, 42, 9047 (d) Seebach, D.; Marti, R. E.; Hintermann,
T. Helv. Chim. Acta 1996, 79, 1710. (e) Rheiner, P. B.; Seebach, D.
Chem. Eur. J. 1999, 5, 3221. (f) Rheiner, P. B.; Seebach, D. Polym.
Mater. Sci. Eng. 1997, 77, 130. (g) Rheiner, P. B.; Sellner, H.; Seebach,
D. Helv. Chim. Acta 1997, 80, 2027, (h) Sellner, H.; Seebach, D. Angew.
Chem., Int. Ed. 1999, 38, 1918. (i) Sellner, H.; Gaber, C.; Rheiner, P.
B.; Seebach, D. Chem. Eur. J. 2000, 6, 3692. (j) Sellner, H.; Karjalainen,
J. K.; Seebach, D. Chem. Eur. J. 2001, 7, 2873. (k) For a review on
recoverable catalysts, see: Fan, W.-H.; Li, Y.-M.; Chan, A. S. C. Chem.
Rev. 2002, 102, 3385.
(3) For enantioselective hydrogenations of aromatic and heteroaro-
matic ketones, see: Chen, C.-y.; Reamer, R. A.; Chilenski, J. R.;
McWilliams, C. J. Org. Lett. 2003, 5, 5039.
(4) (a) Dosa, P. I.; Ruble, J. C.; Fu, G. C. J. Org. Chem. 1997, 62,
444. (b) Huang, W.-S.; Hu, Q.-S.; Pu, L. J. Org. Chem. 1999, 64, 7940.
(c) Huang, W.-S.; Pu, L. Tetrahedron Lett. 2000, 41, 145. (d) Zhao, G.;
Li, X.-G.; Wang, X.-R. Tetrahedron: Asymmetry 2001, 12, 399. (e) Ko,
D.-H.; Kim, K. H.; Ha, D.-C. Org. Lett. 2002, 21, 3759. (f) Fontes, M.;
Verdaguer, X.; Sola`, L.; Perica`s, M. A.; Riera, A. J. Org. Chem. 2004,
69, 2532. (g) Ji, J.-X.; Wu, J.; Au-Yeung, T. T.-L.; Yip, C.-W.; Haynes,
R. K.; Chan, A. S. C. J. Org. Chem. 2005, 70, 1093.
10.1021/jo050994h CCC: $30.25 © 2005 American Chemical Society
Published on Web 08/02/2005
7432
J. Org. Chem. 2005, 70, 7432-7435