6066
N.-Y. Lee et al. / Tetrahedron Letters 46 (2005) 6063–6066
2002, 4, 7–10; (c) Ko¨hn, M.; Benito, J. M.; Ortiz-Mellet,
AOCH2CH@CHcisHtrans), 5.91 (ddt, J = 17.2, 10.5,
5.5 Hz, 3H, 3 · AOCH2CH@CHcisHtrans); 13C NMR
(CDCl3): d 27.3, 34.1, 35.8, 69.3, 71.1, 72.6, 110.0, 117.8,
135.2; MS (FAB) m/z 453 [M+Na]+; HRMS (FAB) m/z
calcd for C19H28BrO6: 431.1069. Found: 431.1068 [M+1]+.
7. Mukai, C.; Sugimoto, Y.; Miyazawa, K.; Yamaguchi, S.;
Hanaoka, M. J. Org. Chem. 1998, 63, 6281–6287.
C.; Lindhorst, T. K. ChemBioChem 2004, 5, 771–777; (d)
Li, Y.; Zhang, X.; Chu, S.; Yu, K.; Guan, H. Carbohydr.
Res. 2004, 339, 873–879; (e) Bovin, N. V.; Gabius, H.-J.
Chem. Soc. Rev. 1995, 413–421; (f) Kitov, P. I.; Sadowska,
J. M.; Mulvey, G.; Armstrong, G. D.; Ling, H.; Pannu, N.
S.; Read, R. J.; Bundle, D. R. Nature 2000, 403, 669–672;
(g) Fan, E.; Zhang, Z.; Minke, W. E.; Hou, Z.; Verlinde,
C. L. M. J.; Hol, W. G. J. J. Am. Chem. Soc. 2000, 122,
8. Compound (16): 1H NMR (CD3OD): d 1.43 (s, 9H), 1.57–
1.85(m, 4H), 1.77 (p, J = 6.25Hz, 6H), 2.81 (t, J =
6.46 Hz, 6H), 2.98 (m, 2H), 3.71 (t, J = 6.0 Hz, 3H), 4.1 (s,
3H), 4.43 (s, 3H); 13C NMR (CD3OD): d 24.9, 28.9, 32.0,
35.3, 40.2, 41.5, 69.6, 70.4, 75.1, 79.9, 111.1, 158.6; MS
(FAB) m/z 519 [M+1]+; HRMS (FAB) m/z calcd for
C24H47N4O8: 519.3394. Found: 519.3389 [M+1]+.
9. Appel, R. Angew. Chem., Int. Ed. Engl. 1975, 14, 801–811.
10. Tomalia, D. A.; Naylor, A. M.; Goddard, W. A., III
Angew. Chem., Int. Ed. Engl. 1990, 29, 138–175.
11. (a) Lindhorst, T. K.; Kieburg, C. Synthesis 1995, 1228–
1230; (b) Lindhorst, T. K.; Kieburg, C. Angew. Chem., Int.
Ed. 1996, 35, 1953–1956.
12. The Boc protecting group could be selectively removed.
For example, treatment of compound 19 with TMSCl,
NaI, MeOH, and TEA in CH3CN gave the Boc depro-
tected compound in 88% yield without causing hydrolysis
of the orthoester which is labile to usual acidic Boc
deprotection conditions. It is envisioned that the glyco-
dendrimer after removal of the acetate groups in sugar,
can be reacted to a SAM on AFM tip containing
N-hydroxysuccinimide-activated carboxy terminal groups,
which is expected to preferentially react with NH2 group
over OH groups.
´
2663–2664; (h) Andre, S.; Pieters, R. J.; Vrasidas, I.;
Kaltner, H.; Kuwabara, I.; Liu, F.-T.; Liskamp, R. M. J.;
Gabius, H.-J. ChemBioChem 2001, 2, 822–830.
4. (a) Lo, Y.-S.; Zhu, Y.-J.; Beebe, T. P. Langmuir 2001, 17,
3741–3748; (b) Touhami, A.; Hoffmann, B.; Vasella, A.;
Denis, F. A.; Dufreˆne, Y. F. Langmuir 2003, 19, 1745–
1751.
5. (a) Lee, H. W.; Kishi, Y. J. Org. Chem. 1985, 50, 4402–
4404; (b) Tse, B.; Kishi, Y. J. Am. Chem. Soc. 1993, 115,
7892–7893; (c) Baudin, G.; Gla¨nzer, B. I.; Swaminathan,
K. S.; Vasella, A. Helv. Chim. Acta 1988, 71, 1367–1378;
(d) Chung, S. K.; Kwon, Y. U.; Chang, Y. T.; Sohn, K.
H.; Shin, J. H.; Park, K. H.; Hong, B. J.; Chung, I. H.
Bioorg. Med. Chem. 1999, 7, 2577–2589; (e) Devaraj, S.;
Shashidar, M. S.; Dixit, S. S. Tetrahedron 2005, 61, 529–
536; (f) Kishi, Y.; Tse, B.; U.S. Patent 5 412 080, 1995.
6. Compound (9): 1H NMR (CDCl3): d 1.80 (dd, J = 8.4,
6.5Hz, 2H), 2.0 (m, 2H), 3.41 (t, J = 6.7 Hz, 2H), 4.11 (dt,
J = 5.5, 1.4 Hz, 6H, 3 · AOCH2CH@CH2), 4.16 (dd,
J = 4.5, 2.8 Hz, 3H), 4.39 (dd, J = 4.4, 2.9 Hz, 3H), 5.18
(ddt, J = 10.3, 1.6, 1.2 Hz, 3H, 3 · AOCH2CH@
CHcisHtrans), 5.31 (ddt, J = 17.2, 1.7, 1.6 Hz, 3H, 3 ·