A R T I C L E S
Kang et al.
conjugated π-electron systems end capped with electron-donor
and -acceptor (D, A) moieties. This design algorithm gives rise
to a dominant intramolecular charge-transfer (ICT) transition
from the ground state to the first excited state and produces
effective polarization along the π-conjugated axis. Considerable
efforts4 have been directed toward the molecular engineering
of such chromophore structures, and a variety of strategies has
emerged within the framework of the classical “two-state model”
for molecular hyperpolarizability â.5 This simple model invokes
a polar ground state and a charge-separated first excited state,
where â is determined by the energy gap between the two states
(∆Ege), the transition dipole moment (µge) between the two
states, and the difference in dipole moment between the two
states (∆µge ) µee - µgg) (eq 1).
and/or multiple (including fused) thiophene ring-containing
bridges (e.g., CLD and FTC), with the chromophore figures-
of-merit, µâ (µ ) the molecular dipole moment), as high as
35 000 × 10-48 esu being achieved.3d
â
∆µge(µge)2/(∆Ege)2
(1)
One approach to enhancing â proposed by Marder and co-
workers involves tuning “bond length alternation” (BLA; the
difference between average single and double bond lengths in
the conjugated chromophore core).6 They argued that BLA,
hence â, can be optimized by controlling the relative neutral
and charge-separated contributions to the ground state via
modifying D/A substituent strength, the polarity of the solvent,
or the strength of an applied electric field. Another model,
“auxiliary donors and acceptors”,7 correlates molecular hyper-
polarizability with the electron density of the π conjugation,
arguing that electron-excessive/deficient heterocycle bridges act
as auxiliary donors/acceptors and lead to substantial increases
in â values. Directed by these strategies, the largest hyperpo-
larizabilities have, to date, been observed with protected polyene
Note that such strategies focus primarily on extensive planar
π conjugation and that such molecules are inherently structurally
complex, complicating synthetic access and introducing potential
chemical, thermal, and photochemical frailties.8 Furthermore,
extended conjugated systems typically introduce bathochromic
shifts in optical excitation, thus eroding transparency at the near-
IR working wavelengths of many photonic applications. Other
â enhancement strategies have emerged recently, including
multidimensional charge-transfer chromophores (e.g., HPEB
and X-CHR)9 and a class of “right-hand-side” zwitterionic
chromophores (e.g., PCTCN and RHSC).4d,10 These chro-
mophores exhibit improved transparency and stability but not
significant enhancement in hyperpolarizability. Interestingly,
Kuzyk has argued that the â responses of all known organic
EO chromophores fall far short of the fundamental quantum
limits by a factor of ∼10-3/2 for reasons that are presently not
entirely clear but the understanding of which may afford
(2) (a) Characterization Techniques and Tabulations for organic Nonlinear
Optical Materials; Kuzyk, M. G., Dirk, C. W., Eds.; Marcel Dekker: New
York, 1998. (b) Nonlinear Optics of Organic Molecules and Polymers;
Nalwa, H. S., Miyata, S., Eds.; CRC Press: Boca Raton, FL, 1997. (c)
Organic Nonlinear Optical Materials; Bosshard, Ch., Sutter, K., Preˆtre,
Ph., Hulliger, J., Flo¨rsheimer, M., Kaatz, P., Gu¨nter, P., Eds.; Advances in
Nonlinear Optics; Gordon & Breach Amsterdam, 1995; Vol. 1. (d)
Molecular Nonlinear Optics: Materials, Physics, DeVices; Zyss, J., Ed.;
Academic Press: Boston, MA, 1994. (e) Introduction to Nonlinear Optical
Effects in Molecules and Polymers; Prasad, P. N., Williams, D. J., Eds.;
John Wiley: New York, 1991. (f) Materials for Nonlinear Optics Chemical
PerspectiVes; Marder, S. R., Stucky, G. D., Sohn, J. E., Eds.; ACS
Symposium Series 455; American Chemical Society: Washington, DC,
1991.
(3) (a) Dalton, L. R.; Jen, A. K.-Y.; Steier, W. H.; Robinson, B. H.; Jang,
S.-H.; Clot, O.; Song, H. C.; Kuo, Y.-H.; Zhang, C.; Rabiei, P.; Ahn,
S.-W.; Oh, M. C. SPIE Proc. 2004, 5351, 1. (b) Lee, M.; Katz, H. E.;
Erben, C.; Gill, D. M.; Gopalan, P.; Heber, J. D.; McGee, D. J. Science
2002, 298, 1401. (c) Ma, H.; Jen, A. K. Y.; Dalton, L. R. AdV. Mater.
2002, 14, 1339. (d) Shi, Y.; Zhang, C.; Zhang, H.; Bechtel, J. H.; Dalton,
L. R.; Robinson, B. H.; Steier, W. H. Science 2000, 28, 119.
(4) (a) Liao, Y.; Eichinger, B. E.; Firestone, K. A.; Haller, M.; Luo, J.;
Kaminsky, W.; Benedict, J. B.; Reid, P. J.; Jen, A. K.-Y.; Dalton, L. R.;
Robinson, B. H. J. Am. Chem. Soc. 2005, 127, 2758. (b) Andreu, R.; Blesa,
M. J.; Carrasquer, L.; Gar´ın, J.; Orduna, J.; Villacampa, B.; Alcala´, R.;
Casado, J.; Delgado, M. C. R.; Navarrete, J. T. L.; Allain, M. J. Am. Chem.
Soc. 2005, 127, 8835. (c) Staub, K.; Levina, G. A.; Barlow, S.; Kowalczyk,
T. C.; Lackritz, H. S.; Barzoukas, M.; Fort, A.; Marder, S. R. J. Mater.
Chem. 2003, 13, 825. (d) Abbotto, A.; Beverina, L.; Bradamante, S.;
Facchetti, A.; Klein, C.; Pagani, G. A.; Redi-Abshiro, M.; Wortmann, R.
Chem. Eur. J. 2003, 9, 1991. (e) Barlow, S.; Marder, S. R. Chem. Commun.
2000, 1555. (f) Jen, A. K.-Y.; Ma, H.; Wu, X.; Wu, J.; Liu, S.; Marder,
S. R.; Dalton, L. R.; Shu, C.-F. SPIE Proc. 1999, 3623, 112.
(5) (a) Qudar, J. L.; Chemla, D. S. J. Chem. Phys. 1977, 66, 2664. (b) Marder,
S. R.; Beratan, D. N.; Cheng, L.-T. Science 1991, 252, 103.
(6) (a) Marder, S. R.; Kippelen, B.; Jen, A. K.-Y.; Peyghambarian, N. Nature
1997, 388, 845. (b) Marder, S. R.; Cheng, L. T.; Tiemann, B. G.; Friedli,
A. C.; Blanchard-Desce, M.; Perry, J. W.; Skindhoej, J. Science 1994, 263,
511. (c) Marder, S. R.; Gorman, C. B.; Tiemann, B. G.; Cheng, L. T.
J. Am. Chem. Soc. 1993, 115, 2524.
(7) (a) Albert, I. D. L.; Marks, T. J.; Ratner, M. A. Chem. Mater. 1998, 10,
753. (b) Albert, I. D. L.; Marks, T. J.; Ratner, M. A. J. Am. Chem. Soc.
1997, 119, 6575. (c) Rao, V. P.; Jen, A. K.-Y.; Chandrasekhar, J.;
Namboothiri, I. N. N.; Rathna A. J. Am. Chem. Soc. 1996, 118, 12443.
(8) Galvan-Gonzalez, A.; Belfield, K. D.; Stegeman, G. I.; Canva, M.; Marder,
S. R.; Staub, K.; Levina, G.; Twieg, R. J. J. Appl. Phys. 2003, 94, 756 and
references therein.
(9) (a) Traber, B.; Wolff, J. J.; Rominger, F.; Oeser, T.; Gleiter, R.; Goebel,
M.; Wortmann, R. Chem. Eur. J. 2004, 10, 1227. (b) Kang, H.; Zhu, P.;
Yang, Y.; Facchetti, A.; Marks, T. J. J. Am. Chem. Soc. 2004, 126, 15974.
(c) Wortmann, R.; Lebus-Henn, S.; Reis, H.; Papadopoulos, M. G.
THEOCHEM 2003, 633, 217. (d) Yang M.-L.; Champagne, B. J. Phys.
Chem. A 2003, 107, 3942. (e) Ostroverkhov, V.; Petschek, R. G.; Singer,
K. D.; Twieg, R. J. Chem. Phys. Lett. 2001, 340, 109. (f) Wolff, J. J.;
Segler, F.; Matschiner, R.; Wortmann, R. Angew. Chem., Int. Ed. Engl.
2000, 39, 1436. (g) Van, Elshocht, S.; Verbiest, T.; Kauranen, M.; Ma, L.;
Cheng, H.; Musick, K.; Pu, L.; Persoons, A. Chem. Phys. Lett. 1999, 309,
315. (h) Brasselet, S.; Cherioux, F.; Audebert, P.; Zyss, J. Chem. Mater.
1999, 11, 1915. (i) Lee, Y.-K.; Jeon, S.-J.; Cho, M. J. Am. Chem. Soc.
1998, 120, 10921. (j) Wortmann, R.; Glania, C.; Kra¨mer, P.; Matschiner,
R.; Wolff, J. J.; Kraft, S.; Treptow, B.; Barbu, E.; La¨ngle, D.; Go¨rlitz, G.
Chem. Eur. J. 1997, 3, 1765. (k) Moylan, C. R.; Ermer, S.; Lovejoy, S.
M.; McComb, I.-H.; Leung, D. S.; Wortmann, R.; Krdmer P.; Twieg, R. J.
J. Am. Chem. Soc. 1996, 118, 8, 12950.
(10) (a) Kay, A. J.; Woolhouse, A. D.; Zhao, Y.; Clays, K. J. Mater. Chem.
2004, 14, 1321. (b) Innocenzi, P.; Miorin, E.; Brusatin, G.; Abbotto, A.;
Beverina, L.; Pagani, G. A.; Casalboni, M.; Sarcinelli, F.; Pizzoferrato, R.
Chem. Mater. 2002, 14, 3758. (c) Kay, A. J.; Woolhouse, A. D.; Gainsford,
G. J.; Haskell, T. G.; Barnes, T. H. J. Mater. Chem. 2001, 11, 996. (d)
Fort, A.; Mager, L.; Muller, J.; Combellas, C.; Mathey, G.; Thie´bault, A.
Opt. Mater. 1999, 12, 339. (e) Szablewski, M.; Thomas, P. R.; Thornton,
A.; Bloor, D.; Cross, G. H.; Cole, J. M.; Howard, J. A. K.; Malagoli, M.;
Meyer, F.; Bredas, J. L.; Wenseleers, W.; Goovaerts, E. J. Am. Chem. Soc.
1997, 119, 3144.
9
3268 J. AM. CHEM. SOC. VOL. 129, NO. 11, 2007