F. Geoffrey et al. / Journal of Organometallic Chemistry 690 (2005) 3983–3989
3989
to the residual proton chemical shift of the deuterated
solvent (1H), the carbon chemical shift of the deuterated
solvent (13C) and H3PO4 (31P) and Me4Sn (119Sn). Mass
spectra were recorded on a VG autospec Fisons instru-
ment (Electron ionisation at 70 eV) by Dr. A. Abdul-
Sada. Elemental analysis was performed by Micro
Analytisches Labor Pascher (Germany).
support of this research. Generous allocation of com-
puter time from the NIIF Supercomputer Centre (Buda-
pest) is also gratefully acknowledged. J.F.N. and L.N.
acknowledge joint support from the Royal Society.
References
[1] F.G.N. Cloke, P.B. Hitchcock, J.F. Nixon, D.J. Wilson, Organo-
metallics 19 (2000) 219.
7. Synthesis of Ph3SnP2C3But3 (1a)
[2] F.G.N. Cloke, J.C. Green, P.B. Hitchcock, J.F. Nixon, J. Suter,
D.J. Wilson, in preparation.
A Schlenk tube was charged with KðTHFÞP2C3Bu3t
(0.200 g, 0.526 mmol), Ph3SnCl (0.202 g, 0.526 mmol)
and THF (30 ml) and the reaction mixture was stirred
for 12 h. The resulting yellow suspension was filtered
through diatomaceous earth, the solvent removed in va-
cuo from the filtrate and the yellow oily solid recrystal-
lised from cold hexanes yielding (1a) as a yellow powder
(yield 0.270 g, 82%).
[3] J.R.Hanks, unpublished results, Ph.D. Thesis University of
Sussex, 2000.
[4] S. Al-Juaid, P.B. Hitchcock, R.M. Matos, J.F. Nixon, J. Chem.
Soc., Chem. Commun. (1993) 267.
[5] P. Jutzi, M. Kuhn, J Organomet. Chem. 173 (1979) 221;
E.C. Lund, T. Livinghouse, Organometallics 9 (1990) 2426.
[6] F. Nief, F. Mathey, J. Chem. Soc. Chem. Commun. (1998) 770.
[7] J.J. Durkin, unpublished results, Ph.D. Thesis, University of
Sussex, 1995.
1H NMR data (d6-benzene, 295 K): d 7.60–7.06 (m,
15 H, Sn(C6H5)3), 1.47 (s, br, 18H, CC(CH3)3), 1.18 (s,
9H, PCC(CH3)3P).
[8] F.W. Heinemann, H. Pritzkow, M. Zeller, U. Zenneck, Organo-
metallics 20 (2001) 2905.
[9] M. Hofmann, F.W. Heinemann, U. Zenneck, J. Organometal.
Chem. 643 (2002) 357.
13C{1H} NMR data (d8-toluene, 295 K): d 202.1 (t,
[10] F.W. Heinemann, H. Pritzkow, M. Zeller, U. Zenneck, Organo-
metallics 19 (2000) 4283.
2
PCP, J(PC) 47.3, J(SnC) 31.16 Hz), 141.8 (p-C6H5,
4J(SnC) 4 Hz), 135.0 (ipso-C6H5, J(SnC) 35.6 Hz), 126.7
[11] A. Elvers, F.W. Heinemann, B. Wrackmeyer, U. Zenneck,
Chemistry A: Eur. J. 5 (1999) 3143.
2
(o-C6H5, J(SnC) 6.2 Hz) 37.0 (t, PCC(CH3)3P, J(PC)
2
[12] A. Elvers, F.W. Heinemann, M. Heinemann, M. Zeller, U.
Zenneck, Angew. Chem. Int. Edn. Engl. 39 (2000) 2087.
[13] A. Elvers, F.W. Heinemann, S. Kummer, B. Wrackmeyer, M.
Zeller, U. Zenneck, Phosphorus Sulfur Silicon and Rel. Elements
146 (1999) 725.
2
15.73 Hz), 36.4 (d, CC(CH3)3C, J(PC) 24.28 Hz), 32.7
(PCC(CH3)3P), 32.5 (br, CC(CH3)3).
31P{1H} NMR data (d8-toluene, 215 K): d 315.1 (d,
CPbC, J(PP) 13.39 Hz, J(PSn) 115.4 Hz), 24.4 (d,
2
3
[14] F.G.N. Cloke, P.B. Hitchcock, P. Hunnable, J.F. Nixon, L.
Nyulaszi, E. Neicke, V. Thelen, Angew. Chem. Angew. Chem.,
Int. Ed. Engl. 37 (1998) 1083.
2
PaSnPh3, J(PP) 13.39 Hz, J(PSn) 686.52 Hz).
119Sn{1H} NMR data (d8-toluene, 223 K): d ꢀ146.2
3
(dd, J(SnP) 700.7, J(SnP) 124.6 Hz).
[15] V. Caliman, P.B. Hitchcock, J.F. Nixon, J. Chem. Soc. Chem.
Commun. (1995) 1661.
119Sn{1H} NMR data (d8-toluene, 333 K): d ꢀ145 (t,
2J(SnP) 288 Hz).
´
[16] L. Nyulaszi, J. Phys. Chem. 100 (1996) 6194.
[17] A. Dransfeld, L. Nyula´szi, P.v R. Schleyer, Inorg. Chem. 37
(1998) 4413.
EI-MS m/z (%): 620(55) [M]+, 543 (8) [M ꢀ Ph]+,
482(25) [M(ButCCBut)]+, 351(100) ½M ꢀ P2C3But ꢁ.
3
[18] L. Nyula´szi, P.v R. Schleyer, J. Am. Chem. Soc. 121 (1999) 6872.
[19] In Fig 4, the Kohn–Sham orbitals are shown and are essentially
the same as the canonical HF MOs.
7.1. Crystal data for (1a)
[20] F. Mathey, Acc. Chem. Res. 37 (2004) 954.
[21] Yu.A. Ustynyuk, A.V. Kisin, A.A. Zenkin, J. Organomet. Chem.
37 (1972) 101;
C33H42P2Sn, M = 619.30, orthorhombic, space group
˚
P212121, a = 8.840(2) A, b = 17.120(5) A, c = 20.418(6)
˚
Yu.K. Grishin, N.M. Sergeyev, Yu.A. Ustynyuk, J. Organomet.
Chem. 22 (1970) 361.
3
A, V = 3090.2(2) A , T = 173(2) K, Z = 4, Dc = 1.33
˚
˚
Mg mꢀ3, l = 0.95 mmꢀ1, k = 0.71073 A, F(000) = 1280,
[22] d polarization fuctions with exponents 0.183, 0.55 and 0.8 were
added to Sn, P and C atoms, respectively.
˚
crystal size 0.40 · 0.40 · 0.40 mm3, 17939 measured
reflections, 9001 independent reflections (Rint = 0.0477),
8138 reflections with I > 2r(I), Final indices R1 = 0.032,
wR2 = 0.062 for I > 2r(I), R1 = 0.041, wR2 = 0.079 for
all data. Data collection: Enraf Nonius CAD4. Struc-
ture solution Program package WINGX. Refinement
using SHELXL-97.
[23] M.J. Frisch, G.W. Trucks, H.B. Schlegel, G.E. Scuseria, M.A.
Robb, J.R. Cheeseman, V.G. Zakrzewski, J.A. Montgomery Jr.,
R.E. Stratmann, J.C. Burant, S. Dapprich, J.M. Millam, A.D.
Daniels, K.N. Kudin, M.C. Strain, O. Farkas, J. Tomasi, V.
Barone, M. Cossi, R. Cammi, B. Mennucci, C. Pomelli, C.
Adamo, S. Clifford, J. Ochterski, G.A. Petersson, P.Y. Ayala, Q.
Cui, K. Morokuma, D.K. Malick, A.D. Rabuck, K. Raghava-
chari, J.B. Foresman, J. Cioslowski, J.V. Ortiz, B.B. Stefanov, G.
Liu, A. Liashenko, P. Piskorz, I. Komaromi, R. Gomperts, R.L.
Martin, D.J. Fox, T. Keith, M.A. Al-Laham, C.Y. Peng, A.
Nanayakkara, C. Gonzalez, M. Challacombe, P.M.W. Gill, B.
Johnson, W. Chen, M.W. Wong, J.L. Andres, C. Gonzalez, M.
Head-Gordon, E.S. Replogle, J.A. Pople, GAUSSIAN 98, Revision
A.5, Gaussian Inc., Pittsburgh, PA, 1998.
Acknowledgements
The authors are grateful to the Hungarian Research
Fund (OTKA Grants T 034675 and D42216) for grant