Configuration of Monoalcohols and Primary Monoamines
J. Am. Chem. Soc., Vol. 123, No. 25, 2001 5963
acid-base complexes with benzoylbenzoic acid6 and poly((4-
carboxyphenyl)acetylene).7 The stereochemistry of secondary
monoalcohols has been investigated by induced CD of their
complexes with Rh2(OCOCF3)4,8 copper hexafluoroacetyl-
acetonate,9 and the optical rotation and CD of their 2,4-
dinitrobenzenesulfenyl derivatives.10
if both derivatives of the chiral amine or alcohol have to be
prepared and measured.
In the following we describe a microscale method for
determining the absolute configurations of secondary mono-
alcohols and primary monoamines in which the hydroxyl and
amino groups are linked to the stereogenic center. It is an
extension of the conventional exciton chirality method. Since
the presence of two or more chirally oriented chromophores is
a prerequisite for the exciton chirality method,17,18 it cannot be
applied directly to compounds in which the hydroxyl or amino
group is the only site available for the introduction of a
chromophore. Application to such compounds requires either a
chromophore already present in the substrate, such as R-aryl-
substituted alcohols19 or allylic alcohols,20 or employment of a
host molecule as a sensitive bichromophoric CD reporter
group.3,21
In recent years porphyrins and zinc porphyrins have attracted
widespread attention as reporter groups with multifaceted
properties for structural studies by CD spectroscopy.22 The
chromophore 5-(carboxyphenyl)-10,15,20-triphenylporphyrin22
has an intense red-shifted Soret band at ca. 414 nm and
propensity to undergo intramolecular π-π stacking in a
stereocontrolled manner. This renders it a versatile and powerful
reporter group in configurational assignments of various sub-
strates with a single stereogenic center, e.g. acyclic diamines
and amino alcohols,23 diols,24,25 and R-hydroxy acids.26 In
another protocol, two zinc tetraphenylporphyrin residues were
linked by a pentanediol spacer.1 The resulting zinc porphyrin
tweezer 2 (Figure 2), an achiral CD reporter “receptor”, was
capable of binding various chiral acyclic R,ω-diamines through
zinc-amine coordination that resulted in formation of 1:1
macrocyclic host/guest complexes.1 The stereoselective com-
plexation gave rise to one clearly preferred porphyrin helicity,
represented by an exciton-coupled CD in the porphyrin spectral
region with signs controlled by the absolute configuration of
the bound diamine. It was subsequently found that this zinc
porphyrin tweezer 2 also forms complexes with conjugate 7a
(Scheme 1) prepared from primary monoamines 4a and carrier
5 (the N-Boc protected form of the trifunctional bidentate carrier3
molecule 6). In such cases, the preferred porphyrin helicity of
the resultant complex 8a was also dictated by the relative steric
size of substituents attached to the stereogenic center. The
stereodifferentiation between the large and medium groups, R1
The most widely used method for configurational assignments
of both secondary monoalcohols11,12 and monoamines13 is the
Mosher NMR method and its modified versions which are based
on the ring current effect of the introduced aryl moiety. The
original protocol requires derivatization of the chiral alcohol
or amine with both (R)- and (S)-enantiomers of a chiral aromatic
acid, such as R-methoxy-R-(trifluoromethyl)phenylacetic acid
(MTPA), R-methoxyphenylacetic acid (MPA), or other auxiliary
reagent, and measurement of the ∆δS,R values for the protons
flanking the alcoholic and amino functions. The Mosher NMR
method has also found some of its most sensitive applications
in using 19F- and 13C-NMR spectroscopy.11 Recently, this
method has undergone considerable progress in terms of
introducing new auxiliary reagents14 and novel procedures15 that
require the preparation of only one of the two chiral esters or
amides. Despite such improvements there are cases12,16 where
the Mosher method cannot be applied with certainty due to either
the lack of protons on one side of the molecule or the small
∆δS,R values that approach the limits of experimental error. The
required amount of sample is also a restriction in Mosher’s
method since milligram quantities are usually needed, especially
(5) (a) Smith, H. E.; Neergaard, J. R. J. Am. Chem. Soc. 1997, 119, 116-
124. (b) Smith, H. E. In Circular Dichroism, Principles and Applications,
2nd ed.; Berova, N., Nakanishi, K., Woody, R. W., Eds.; Wiley-VCH: New
York, 2000; pp 397-430.
(6) (a) Takenaka, S.; Miyauchi, Y.; Tokura, N. Tetrahedron Lett. 1976,
3811-3814. (b) Takenaka, S.; Ako, M.; Kotani, T.; Matsubara, A.; Tokura,
N. J. Chem. Soc., Perkin Trans. 2 1978, 95-99. (c) Takenaka, S.; Kondo,
K.; Tokura, N. J. Chem. Soc., Perkin Trans. 2 1975, 1520-1524.
(7) (a) Yashima, E.; Matsushima, T.; Okamoto, Y. J. Am. Chem. Soc.
1997, 119, 6345-6359. (b) Yashima, E.; Matsushima, T.; Okamoto, Y. J.
Am. Chem. Soc. 1995, 117, 11596-11597.
(8) (a) Gerards, M.; Snatzke, G. Tetrahedron: Asymmetry 1990, 1, 221-
236. (b) Frelek, J.; Szczepek, W. J. Tetrahedron: Asymmetry 1999, 10,
1507-1520.
(9) Dillon, J.; Nakanishi, K. J. Am. Chem. Soc. 1974, 96, 4055-4057.
(10) Craine, L. E.; Bicknell, L. K.; Mailloux, R. C.; Mark, J. P.; Mitchell,
S. A.; Vicente, S. R.; Jasinski, J. P.; Woudenberg, R. C. J. Org. Chem.
1993, 58, 1251-1258.
(11) (a) Trost, B. M.; Belletire, J. L.; Godleski, S.; McDougal, P. G.;
Balkovec, J. M.; Baldwin, J. J.; Christy, M. E.; Ponticello, G. S.; Varga, S.
L.; Springer, J. P. J. Org. Chem. 1986, 51, 2370-2374. (b) Dale, J. A.;
Mosher, H. S. J. Am. Chem. Soc. 1973, 95, 512-519. (c) Pehk, T.; Lippmaa,
E.; Lopp, M.; Paju, A.; Borer, B. C.; Taylor, R. J. K. Tetrahedron:
Asymmetry 1993, 4, 1527-1532. (d) Latypov, S. K.; Seco, J. M.; Quinoa,
E.; Riguera, R. J. Org. Chem. 1996, 61, 8569-8577. (e) Dale, J. A.; Dull,
D. L.; Mosher, H. S. J. Org. Chem. 1969, 34, 2543-2549
(12) Ohtani, I.; Kusumi, T.; Kashman, Y.; Kakisawa, H. J. Am. Chem.
Soc. 1991, 113, 4092-4096.
(13) (a) Trost, B. M.; Bunt, R. C.; Pulley, S. R. J. Org. Chem. 1994, 59,
4202-4205. (b) Seco, J. M.; Quinoa, E.; Riguera, R. J. Org. Chem. 1999,
64, 4, 4669-4675. (c) Seco, J. M.; Latypov, S. K.; Quinoa, E.; Riguera, R.
J. Org. Chem. 1997, 62, 7569-7574. (d) Latypov, S. K.; Seco, J. M.;
Quinoa, E.; Riguera, R. J. Org. Chem. 1995, 60, 1538-1545.
(14) (a) Ferreiro, M. J.; Latypov, S. K.; Quinoa, E.; Riguera, R.
Tetrahedron: Asymmetry 1996, 7, 2195-2198. (b) Parve, O.; Aidnik, M.;
Lille, U.; Martin, I.; Vallikivi, I.; Vares, L.; Pehk, T. Tetrahedron:
Asymmetry 1998, 9, 885-896. (c) Harada, N.; Watanabe, M.; Kuwahara,
S.; Sugio, A.; Kasai, Y.; Ichikawa, A. Tetrahedron: Asymmetry 2000, 11,
2843. (d) Fukushi, Y.; Yajima, C.; Mizutani, J. Tetrahedron Lett. 1994,
35, 599-602.
(17) Berova, N.; Nakanishi, K. In Circular Dichroism, Principles and
Applications, 2nd ed.; Berova, N., Nakanishi, K., Woody, R. W., Eds.;
Wiley-VCH: New York, 2000; pp 337-382.
(18) Harada, N.; Nakanishi, K. In Circular Dichroic Spectroscopy Exciton
Coupling in Organic Stereochemistry; University Science Books: Mill
Valley, CA, 1983.
(19) (a) Adam, W.; Lukacs, Z.; Viebach, K.; Humpf, H.-U.; Saha-
Moeller, C. R.; Schreier, P. J. Org. Chem. 2000, 65, 186-190. (b) Pini,
D.; Petri, A.; Rosini, C.; Salvadori, P.; Giorgi, R.; Di Bugno, C.; Turbanti,
L.; Marchetti, F. Tetrahedron 1994, 50, 205-216.
(20) (a) Harada, N.; Iwabuchi, J.; Yokota, Y.; Uda, H.; Nakanishi, K. J.
Am. Chem. Soc. 1981, 103, 5590-5591. (b) Johnson, R. A.; Krueger, W.
C.; Nidy, E. G.; Pschigoda, L. M.; Garry, M. J. J. Org. Chem. 1980, 45,
1528-1532. (c) Gonnella, N. C.; Nakanishi, K.; Martin, V. S.; Sharpless,
K. B. J. Am. Chem. Soc. 1982, 104, 3775-3776. (d) Humpf, H.-U.; Berova,
N.; Nakanishi, K.; Jarstfer, M. B.; Poulter, C. D. J. Org. Chem. 1995, 60,
3539-3542.
(21) Kato, N. J. Am. Chem. Soc. 1990, 112, 254-257.
(22) Huang, X.; Nakanishi, K.; Berova, N. Chirality 2000, 12, 237-
255.
(15) (a) Lopez, B.; Quinoa, E.; Riguera, R. J. Am. Chem. Soc. 1999,
121, 9724-9725. (b) Seco, J. M.; Quinoa, E.; Riguera, R. Tetrahedron
1999, 55, 569-584. (c) Latypov, S. K.; Seco, J. M.; Quinoa, E.; Riguera,
R. J. Am. Chem. Soc. 1998, 120, 877-882.
(16) (a) Seco, J. M.; Quinoa, E.; Riguera, R. Tetrahedron: Asymmetry
2000, 11, 2781-2791. (b) Earle, M. A.; Hultin, P. G. Tetrahedron Lett.
2000, 41, 7855-7858.
(23) Matile, S.; Berova, N.; Nakanishi, K. Enantiomer 1996, 1, 1-12.
(24) Jiang, H.; Huang, X.; Nakanishi, K.; Berova, N. Tetrahedron Lett.
1999, 40, 7645-7649.
(25) Matile, S.; Berova, N.; Nakanishi, K.; Fleischhauer, J.; Woody, R.
W. J. Am. Chem. Soc. 1996, 118, 5198-5206.
(26) Rickman, B. H.; Matile, S.; Nakanishi, K.; Berova, N. Tetrahedron
1998, 54, 5041-5064.