6344
S. Zhou et al. / Tetrahedron Letters 46 (2005) 6341–6344
O
O
O
iv
ii
TBDPSO
RO
TBDPSO
N
O
O
OH
R
34 R = OH
35 R = Cl
Li
37 R = H
38 R = Me
R
32 R = H
33 R =TBDPS
iii
v
i
N
O
Bn
36
Bn
TBDPSO
TBDPSO
TBDPSO
R
ix
vi
viii
Me
Me
CO2Et
OH
Me
vii
Segment D
39 R = CH2OH
40 R = CHO
41
Scheme 5. Synthesis of Segment D: (i) n-BuLi, TBDPSCl, 87%; (ii) PDC, DMF, 61%; (iii) (COCl)2; (iv) 36, 72% (two steps); (v) NaHMDS, MeI,
74%; (vi) LiBH4, 95%; (vii) Swern; (viii) (o-MeOPhO)2P(O)CH(Et)CO2Et, NaH, 78% (two steps); (ix) DIBAL-H, 92%.
O
O
OH
O
R
NHR'
ii
i
iii
iv
O
NHTs
BnO
NHTs
O
O
O
Bn
42 R = R' = H
43 R = C(O)Et, R' = Ts
Me
Bn
Me
Bn
45
44
OHC
O
CO2Me
O
vi
v
O
O
O
O
Br
O
OR
OH
Org. Lett. 2004, 6, 2845
Me
Segment E'
Me
Br
Me
46
47
Segment E
Scheme 6. Synthesis of Segment E0: (i) TsCl, Et3N, then EtC(O)Cl, Et3N, >90%; (ii) TiCl4, DIEA, BnOCH2CHO; (iii) H2, Pd/C, then Me2C(OMe)2;
(iv) LAH, 80% (four steps); (v) Swern, then CBr4, PPh3, 50% (two steps); (vi) n-BuLi, ClCO2Me, 81%.
chirality-inducing source. With compound 44 in hand,
the O-Bn moiety of which was removed by standard
hydrogenation, and the resulting diol was subjected to
acetonide protection to yield 45. LAH mediated ester
reduction on 45 provided alcohol 4615 in 80% overall
yield (four steps from 43). Alcohol 46 was oxidized under
Swern conditions to provide its corresponding aldehyde
intermediate, which was further treated with triphenyl-
phospine and carbon tetrabromide to afford the a,a-di-
bromo-olefin 47 in 50% overall yield. Final treatment
of 47 with n-BuLi and chloromethylformate thus pro-
vided the desired alkyne derivative Segment E0. It should
be pointed out that further conversion of Segment E0 to
References and notes
1. Umezawa, I.; Komiyama, K.; Oka, H.; Okada, K.;
Tomisaka, S.; Miyano, T.; Takano, S. J. Antibiot. 1984,
37, 706–711.
2. Komiyama, K.; Okada, K.; Hirokawa, Y.; Masuda, K.;
Tomisaka, S.; Umezawa, I. J. Antibiot. 1985, 38, 224–229.
3. Wang, Y.; Ponelle, M.; Sanglier, J.-J.; Wolff, B. Helv.
Chim. Acta 1997, 80, 2157–2167.
4. Arai, N.; Chikaraishi, N.; Omura, S.; Kuwajima, I. Org.
Lett. 2004, 6, 2845–2848.
5. Zhou, S-F.; Chen, H-X.; Liao, W.; Chen, S. H.; Li, G.;
Ando, R.; Kuwajima, I. Presented at the Poster Section in
Organic Chemistry Division, 13–18 March 2005, San
Diego, CA. Abst.#ORGN-576.
Segment
E
was reported by Kuwajima and
co-workers.4
6. Chen, K.-M.; Semple, J. E.; Joullie, M. M. J. Org. Chem.
1985, 50, 3997–4005.
7. Ple, P. A.; Hamon, A.; Jones, G. Tetrahedron 1997, 53,
3395–3400.
8. Arai, N.; Chikaraishi, N.; Ikawa, M.; Omura, S.; Kuwa-
jima, I. Tetrahedron: Asymmetry 2004, 15, 733–741.
9. Tori, M.; Toyoda, N.; Sono, M. J. Org. Chem. 1998, 63,
306–313.
In summary, we have accomplished practical, large-scale
preparations of Segment AB0, Segment D, and Segment
E0, needed for total synthesis of kazusamycin A. All of
the three building blocks were prepared via newly
designed synthetic sequences with the intention to avoid
using expensive starting materials, hazardous reagents,
and labor-intensive chromatographic separation.
10. Aiguade, J.; Hao, J.-L.; Forsyth, C. J. Tetrahedron Lett.
2001, 42, 817–820.
11. Lautens, M.; Stammers, T. A. Synthesis 2002, 1993–2012.
12. Ando, K. J. Org. Chem. 1997, 62, 1934–1939.
13. Vicario, J. L.; Job, A.; Wolberg, M.; Muller, M.; Enders,
D. Org. Lett. 2002, 4, 1023–1026.
Acknowledgements
14. Ghosh, A. K.; Kim, J.-H. Tetrahedron Lett. 2002, 43,
5621–5624.
15. Ojika, M.; Kigoshi, H.; Ishigaki, T.; Nisiwaki, M.;
Tsukada, I.; Mizuta, K.; Yamada, K. Tetrahedron Lett.
1993, 34, 8505–8508.
We thank Mr. Jianyi Ma, Chonggang Liu, Shengbin Li,
and Xia Li for their help with synthetic work. We are
also indebted to the chemists from Analytic Department
at WuXi PharmaTech for their support.