of the mixed anhydride of the acid with (R)-lithio-4-
isopropyl-2-oxazolidinone provided the imide 5 in good
overall yield. Alkylation10 of the sodium enolate of imide 5
with benzyl iodomethyl ether (prepared in situ) proceeded
to give a single detectable diastereomer in 93% yield.
Reductive removal of the auxiliary gave primary alcohol 6,
which was oxidized under Swern conditions.11 The aldehyde
was treated with vinylmagnesium bromide to yield a 3:1
inseparable mixture of diastereomers favoring the (R)-
configuration. Ring-closing metathesis utilizing Grubbs
catalyst12 [Cl2(Cy3P)(sIMes)RudCHPh] cleanly furnished the
separable oxocenes 7 and 8 in good yield. The undesired
isomer 8 could be inverted to alcohol 7 by the Mitsunobu
protocol.13
Scheme 1. Convergent Coupling Strategy
To establish the C6 stereocenter, a substrate-controlled
selective hydrogenation of the trisubstituted olefin was
investigated. As expected, the configuration of the C8
hydroxyl directly influenced the facial selectivity. Whereas
oxocene 8 underwent hydrogenation selectively from the
undesired face, hydrogenation of 7 using Crabtree’s catalyst14
at reduced temperature provided the oxacane 9 with the
desired C6 configuration as a single observable diastereomer
in excellent yield (Scheme 2). Similar directing effects have
been noted in the cyclopropanation and epoxidation of
medium ring allylic alcohols.15 Oxidation of alcohol 9 to
the ketone16 preceded a highly selective addition of methyl-
magnesium chloride to deliver the tertiary alcohol 10.
Selective cleavage of the benzyl ether was followed by
oxidation of the resultant alcohol to aldehyde 11 in prepara-
tion for the HWE coupling.
particularly suited to formation of the trans-fused ring
junctions common to the ladder toxins.
A highly convergent approach was envisoned for the
assembly of polycyclic ethers, which would rely on a
Horner-Wadsworth-Emmons (HWE) reaction between two
appropriately functionalized precursors leading to an inter-
mediate enone (Scheme 1). Conjugate reduction of the enone
and cyclization to the hemiacetal would permit an endo-
selective dehydration to form a cyclic enol ether. Consider-
able precedent exists for the further oxidation of the
endocyclic enol ether to allow closure of the remaining
ring.2b-e,3k,m,n,o
For the BCDE fragment of brevetoxin A, suitably func-
tionalized B ring and E ring units were required to implement
the planned assembly. Synthesis of the B ring aldehyde,
required for the HWE coupling, commenced with an aldol
addition of the chlorotitanium enolate of the thioimide 2
(Scheme 2) with 3-methyl-3-butenal8 to provide the anti
adduct 3 in 64% isolated yield (3:other anti:syn ) 87:2:11).
Reductive removal of the chiral auxiliary followed by
protecting group manipulations gave the allyl ether 4.
Selective removal of the allyl group,9 alkylation of the
resultant alcohol with sodium bromoacetate, and treatment
The synthesis of the E ring precursor of brevetoxin A is
shown in Scheme 3. Oxidation of the known alcohol 1217
and subsequent propionate aldol addition18 yielded the Evans
syn adduct 13 in high yield and excellent diastereoselectivity
(>98:2). Reductive removal of the chiral auxiliary and
(5) (a) Crimmins, M. T.; Brown, B. H. J. Am. Chem. Soc. 2004, 126,
10264. (b) Crimmins, M. T.; DeBaillie, A. C. Org. Lett. 2003, 5, 3009. (c)
Crimmins, M. T.; Powell, M. T. J. Am. Chem. Soc. 2003, 125, 7592. (d)
Crimmins, M. T.; Emmitte, K. A.; Choy, A. L. Tetrahedron 2002, 58, 1817.
(e) Crimmins, M. T.; Tabet, E. A. J. Am. Chem. Soc. 2000, 122, 5473. (f)
Crimmins, M. T.; Emmitte, K. A. Org. Lett. 1999, 1, 2029. (g) Crimmins,
M. T.; Choy, A. L. J. Am. Chem. Soc. 1999, 121, 5653. (h) Crimmins, M.
T.; Choy, A. L. J. Org. Chem. 1997, 62, 7548.
(6) Crimmins, M. T.; Cleary, P. A. Heterocycles 2003, 61, 87.
(7) Crimmins, M. T.; McDougall, P. J. Org. Lett. 2003, 5, 591.
(8) Available from oxidative cleavage of symmetrical diol: See Sup-
porting Information and ref 5h.
(9) Lee, J.; Cha, K. Tetrahedron Lett. 1996, 37, 3663.
(10) Crimmins, M. T.; Emmitte, K. A.; Katz, J. D. Org. Lett. 2000, 2,
2165.
(11) Mancuso, A. J.; Huang, S.; Swern, D. J. Org. Chem. 1978, 43, 2480.
(12) Scholl, M.; Ding, S.; Lee, C. W.; Grubbs, R. H. Org. Lett. 1999, 1,
953.
(13) See Supporting Information for details.
(14) Crabtree, R. H.; Felkin, H.; Fillebeen-Khan, T.; Morris, G. E. J.
Organomet. Chem. 1979, 168, 183.
(15) (a) Poulter, C. D.; Friedrich, E. C.; Winstein, S. J. Am. Chem. Soc.
1969, 91, 6892. (b) Itoh, T.; Jitsukawa, K.; Kaneda, K.; Teranishi, S. J.
Am. Chem. Soc. 1979, 101, 159.
(16) (a) Dess, D. B.; Martin, J. C. J. Org. Chem. 1983, 48, 4155; J. Am.
Chem. Soc. 1991, 113, 7277. (b) Ireland, R. E.; Liu, L. J. Org. Chem. 1993,
58, 2899.
(3) Brevetoxin A: (a) Nicolaou, K. C.; Yang, Z.; Shi, G.-Q.; Gunzner,
J. L.; Agrios, K. A.; Ga¨rtner, P. Nature 1998, 392, 264. (b) Nicolaou, K.
C.; Bunnage, M. E.; McGarry, D. G.; Shi, S.; Somers, P. K.; Wallace, P.
A.; Chu, X.-J.; Agrios, K. A.; Gunzner, J. L.; Yang, Z. Chem. Eur. J. 1999,
5, 599. (c) Nicolaou, K. C.; Wallace, P. A.; Shi, S.; Ouellette, M. A.;
Bunnage, M. E.; Gunzner, J. L.; Agrios, K. A.; Shi, G.-q.; Ga¨rtner, P.;
Yang, Z. Chem. Eur. J. 1999, 5, 618. (d) Nicolaou, K. C.; Shi, G.-q.;
Gunzner, J. L.; Ga¨rtner, P.; Wallace, P. A.; Ouellette, M. A.; Shi, S.;
Bunnage, M. E.; Agrios, K. A.; Veale, C. A.; Hwang, C.-K.; Hutchinson,
J.; Prasad, C. V. C.; Ogilvie, W. W.; Yang, Z. Chem. Eur. J. 1999, 5, 628.
(e) Nicolaou, K. C. Gunzner, J. L.; Shi, G.-q.; Agrios, K. A.; Ga¨rtner, P.;
Yang, Z. Chem. Eur. J. 1999, 5, 646. (f) Brevetoxin B: (g) Nicolaou, K.
C. Angew. Chem., Int. Ed. Engl. 1996, 35, 589. (h) Matsuo, G.; Kawamura,
K.; Hori, N.; Matsuo, G.; Kawamura, K.; Hori, N.; Matsukura, H.; Nakata,
T. J. Am. Chem. Soc. 2004, 126, 14374. (i) Kadota, I.; Takamura, H.; Nishii,
H.; Yamamoto, Y. J. Am. Chem. Soc. 2005, 27, 9246. (j) Hemibrevetoxin
B: Zakarian, A.; Batch, A.; Holton, R. A. J. Am. Chem. Soc. 2003, 125,
7822 and references therein. (k) Ciguatoxin CTX3C: Inoue, M.; Hirama,
M. Acc. Chem. Res. 2004, 37, 961. Gambierol: (l) Kadota, I.; Takamura,
H.; Sato, K.; Ohno, A.; Matsuda, K.; Yamamoto, Y. J. Am. Chem. Soc.
2003, 125, 46. (m) Fuwa, H.; Kainuma, N.; Tachibana, K.; Sasaki, M. J.
Am. Chem. Soc. 2002, 124, 14983. (n) Johnson, H. W. B.; Majumder, U.;
Rainier, J. D. J. Am. Chem. Soc. 2005, 127, 848. (o) Gymnocin A: Tsukano,
C.; Ebine, M.; Sasaki, M. J. Am. Chem. Soc. 2005, 127, 4326.
(17) Available from alkylation of oxazolidinethione benzyl glycolate;
see ref 10 for synthesis of the enantiomer. Previous synthesis: Mulzer, J.;
Angermann, A. Tetrahedron Lett. 1983, 24, 2843.
(18) Crimmins, M. T.; King, B. W.; Tabet, E. A.; Chaudhary, K. J. Org.
Chem. 2001, 66, 894.
(4) (a) Shimizu, Y.; Chou, H.-N.; Bando, H. J. Am. Chem. Soc. 1986,
108, 514. (b) Pawlak, J.; Tempesta, M. S.; Golik, J.; Zagorski, M. G.; Lee,
M. S.; Nakanishi, K.; Iwashita, T.; Gross, M. L.; Tomer, K. B. J. Am. Chem.
Soc. 1987, 109, 1144.
4034
Org. Lett., Vol. 7, No. 18, 2005