3114 Journal of Medicinal Chemistry, 2006, Vol. 49, No. 11
Mahboobi et al.
(13) Teller, S.; Kra¨mer, D.; Bo¨hmer, S.-A.; F.Tse, K.; Small, D.;
Mahboobi, S.; Wallrapp, C.; Beckers, T.; Kratz-Albers, K.; Schwa¨ble,
J.; Serve, H.; Bo¨hmer, F. D. Bis(1H-2-indolyl)-1-methanones as
inhibitors of the hematopoietic tyrosine kinase Flt3. Leukemia 2002,
16, 1528-1534.
(14) Griffith, J.; Black, J.; Faerman, C.; Swenson, L.; Wynn, M.; Lu, F.;
Lippke, J.; Saxena, K. The structural basis for autoinhibiton of FLT3
by the juxtmembrane domain. Mol. Cell. 2004, 13, 169-178.
(15) Bentley, J. M.; Hebeisen, P.; Muller, M.; Richter, H.; Roever, S.;
Mattei, P.; Taylor, S. Piperazine derivatives. WO 02/10169 A1 2002.
(16) Huang-Minlon A simple modification of the Wolff-Kishner Reduc-
tion. J. Am. Chem. Soc. 1946, 68, 2487-2488.
(17) Kovalenko, M.; Gazit, A.; Bo¨hmer, A.; Rorsman, C.; Ronnstrand,
L.; Heldin, C. H.; Waltenberger, J.; Bo¨hmer, F. D.; Levitzki, A.
Selective platelet-derived growth factor receptor kinase blockers
reverse sis-transformation. Cancer Res. 1994, 54, 6106-6114.
(18) Tse, K. F.; Novelli, E.; Civin, C. I.; Bohmer, F. D.; Small, D.
Inhibition of FLT3-mediated transformation by use of a tyrosine
kinase inhibitor. Leukemia 2001, 15, 1001-1010.
(19) Mohammadi, M.; Froum, S.; Hamby, J. M.; Schroeder, M. C.; Panek,
R. L.; Lu, G. H.; Eliseenkova, A. V.; Green, D.; Schlessinger, J.;
Hubbard, S. R. Crystal structure of an angiogenesis inhibitor bound
to the FGF receptor tyrosine kinase domain. EMBO J. 1998, 17,
5896-5904.
Gasteiger-Hueckel charges. New parameters describing the central
NHC(CH)COC(CH)NH moiety had to be added to the AMBER
4.1 force field (derived from the Tripos force field and from
comparison with similar AMBER parameters). The final minimiza-
tion up to a RMS gradient of 0.05 kcal/(mol‚Å) was performed
with the Powell conjugate gradient method. Considerations on the
PDGFR kinase were based on the FLT3 crystal structure with
simple mutation of the only different binding site residue, FLT3
Phe-691, into PDGFR Thr-681. Handling of compound 82 and its
docking into the PDGFR model were performed like that in the
case of the FLT3-compound 98 complex.
Acknowledgment. This work was supported by a grant from
the Deutsche Krebshilfe (10-2100-Do2, to F.D.B., S.D., and
S.M.) and the Deutsche Krebshilfe grant Oncogene Networks
in the Pathogenesis of AML (to F.D.B., T.F., and C.S.). We
gratefully acknowledge provision of reagents from H. Serve
(University of Mu¨nster) and B. Druker (University of Oregon),
and thank Ulla Bergholz for excellent technical assistance.
(20) Bo¨hmer, F. D.; Karagyozov, L.; Uecker, A.; Serve, H.; Botzki, A.;
Mahboobi, S.; Dove, S. A Single Amino Acid Exchange Inverts
Susceptibility of Related Receptor Tyrosine Kinase for the ATP Site
Inhibitor STI-571. J. Biol. Chem. 2003, 278, 5148-5155.
(21) Nagar, B.; Bornmann, W. G.; Pellicana, P.; Schindler, T.; Veach, D.
R.; Miller, W. T.; Clarkson, B.; Kuriyan, J. Crytal structure of the
kinase domain of c-Abl in complex with the small molecule inhibitors
PD173955 and imatinib (STI-571). Cancer Res. 2002, 62, 4236-
4243.
(22) Weisberg, E.; Boulton, C.; Kelly, L. M.; Manley, P.; Fabbro, D.;
Meyer, T.; Gilliland, D. G.; Griffin, J. D. Inhibition of mutant FLT3
receptors in leukemia cells by the small molecule tyrosine kinase
inhibitor PKC412. Cancer Cell 2002, 1, 433-443.
(23) Cammenga, J.; Horn, S.; Bergholz, U.; Sommer, G.; Besmer, P.;
Fiedler, W.; Stocking, C. Extracellular KIT receptor mutants,
commonly found in core binding factor AML, are constitutively active
and respond to imatinib mesylate. Blood 2005, 106, 3958-3961.
(24) Moasser, M. M.; Srethapakdi, M.; Sachar, K. S.; Kraker, A. J.; Rosen,
N. Inhibition of Src kinases by a selective tyrosine kinase inhibitor
causes mitotic arrest. Cancer Res. 1999, 59, 6145-6152.
(25) Sundberg, R. J.; Russel, F. Syntheses with N-Protected 2-Lithioin-
doles. J. Org. Chem. 1973, 38, 3324-3330.
(26) Ishibashi, H.; Akamatsu, S.; Iriyama, H.; Ikeda, M. Convenient
synthesis of 4-alkyl, alkenyl, and alkynyl substituted N-(phenyl-
sulfonyl)indoles. Chem. Pharm. Bull. 1994, 42, 2150-2153.
(27) Mahboobi, S.; Pongratz, H.; Hufsky, H.; Hockemeyer, J.; Frieser,
M.; Lyssenko, A.; Paper, D. H.; Bu¨rgermeister, J.; Bo¨hmer, F.-D.;
Fiebig, H.-H.; Burger, A. M.; Baasner, S.; Beckers, T. Synthetic
2-Aroylindole Derivatives as a New Class of Potent Tubulin-
Inhibitory, Antimitotic Agents. J. Med. Chem. 2001, 44, 4535-4553.
(28) Wenkert, E.; Moeller, P. D. R.; Piettre, S. R. Five-Membered
Aromatic Heterocycles as Dienophile in Diels-Alder Reactions.
Furan, Pyrrole and Indole. J. Am. Chem. Soc. 1988, 110, 7188-
7194.
(29) Ishibashi, H.; Akamatsu, S.; Iriyama, H.; Hanaoka, K.; Tabata, T.;
Ikeda, M. New, concise route to indoles bearing oxygen or sulfur
substituent at the 4-position. Synthesis of (()- and (S)-(-)-pindolol
and (()-chuangxinmycin. Chem. Pharm. Bull. 1994, 42, 271-276.
(30) Sundberg, R. J.; Parton, R. L. Lithiation of Methoxyindoles. J. Org.
Chem. 1976, 41, 163-165.
(31) Fuji, M.; Muratake, H.; Natsume, M. Preparation of alkyl-substituted
indoles in the benzene portion. Part 6. Synthetic procedure for 4-,
5-, 6- or 7-alkoxy- and hydroxyindole derivatives. Chem. Pharm.
Bull. 1992, 40, 2344-2352.
(32) Matsumoto, M.; Ishida, Y.; Hatanaka, N.A facile one-step synthesis
of 4-aminoindoles from 5-halo-4-oxo-4,5,6,7-tetrahydroindoles. Het-
erocycles 1986, 24, 1667-1674.
(33) Ketcha, D. M.; Gribble, G. W. A convenient synthesis of 3-acylin-
doles via Friedel Crafts acylation of 1-(phenylsulfonyl)indole. A new
route to pyridocarbazole-5, 11-quinones and ellipticine. J. Org. Chem.
1985, 50, 5451-5457.
(34) Kano, S.; Sugino, E.; Shibuya, S.; Hibino, S. Synthesis of Carbazole
Alkaloids Hyellazole and 6-Chlorohyellazole. J. Org. Chem. 1981,
46, 3856-3859.
(35) Silvestri, R.; Martino, G. D.; Regina, G. L.; Artico, M.; Massa, S.;
Vargiu, L.; Mura, M.; Loi, A. G.; Marceddu, T.; Colla, P. L. Novel
Indolyl Aryl Sulfones Active against HIV-1 Carrying NNRTI
Resistance Mutations: Synthesis and SAR Studies. J. Med. Chem.
2003, 46, 248-2493.
Supporting Information Available: Spectroscopic data (IR,
NMR, MS) and detailed combustion analyses. This material is
References
(1) Hanahan, D.; Weinberg, R. A. The hallmarks of cancer. Cell 2000,
100, 57-70.
(2) Blume-Jensen, P.; Hunter, T. Oncogenic kinase signalling. Nature
2001, 411, 355-365.
(3) Pietras, K.; Sjoblom, T.; Rubin, K.; Heldin, C. H.; Ostman, A. PDGF
receptors as cancer drug targets. Cancer Cell 2003, 3, 439-443.
(4) George, P.; Bali, P.; Cohen, P.; Tao, J.; Guo, F.; Sigua, C.;
Vishvanath, A.; Fiskus, W.; Scuto, A.; Annavarapu, S.; Moscinski,
L.; Bhalla, K. Cotreatment with 17-allylamino-demethoxygeldana-
mycin and FLT-3 kinase inhibitor PKC412 is highly effective against
human acute myelogenous leukemia cells with mutant FLT-3. Cancer
Res. 2004, 64, 3645-3652.
(5) Wilhelm, S. M.; Carter, C.; Tang, L.; Wilkie, D.; McNabola, A.;
Rong, H.; Chen, C.; Zhang, X.; Vincent, P.; McHugh, M.; Cao, Y.;
Shujath, J.; Gawlak, S.; Eveleigh, D.; Rowley, B.; Liu, L.; Adnane,
L.; Lynch, M.; Auclair, D.; Taylor, I.; Gedrich, R.; Voznesensky,
A.; Riedl, B.; Post, L. E.; Bollag, G.; Trail, P. A. BAY 43-9006
exhibits broad spectrum oral antitumor activity and targets the RAF/
MEK/ERK pathway and receptor tyrosine kinases involved in tumor
progression and angiogenesis. Cancer Res. 2004, 64, 7099-7109.
(6) Daub, H.; Specht, K.; Ullrich, A. Strategies to overcome resistance
to targeted protein kinase inhibitors. Nat. ReV. Drug. DiscoVery 2004,
3, 1001-1010.
(7) Schmidt-Arras, D.; Schwable, J.; Bohmer, F. D.; Serve, H. Flt3
receptor tyrosine kinase as a drug target in leukemia. Curr. Pharm.
Des. 2004, 10, 1867-1883.
(8) Ozeki, K.; Kiyoi, H.; Hirose, Y.; Iwai, M.; Ninomiya, M.; Kodera,
Y.; Miyawaki, S.; Kuriyama, K.; Shimazaki, C.; Akiyama, H.;
Nishimura, M.; Motoji, T.; Shinagawa, K.; Takeshita, A.; Ueda, R.;
Ohno, R.; Emi, N.; Naoe, T. Biologic and clinical significance of
the FLT3 transcript level in acute myeloid leukemia. Blood 2004,
103, 1901-1908.
(9) Komeno, Y.; Kurokawa, M.; Imai, Y.; Takeshita, M.; Matsumura,
T.; Kubo, K.; Yoshino, T.; Nishiyama, U.; Kuwaki, T.; Kubo, K.;
Osawa, T.; Ogawa, S.; Chiba, S.; Miwa, A.; Hirai, H. Identification
of Ki23819, a highly potent inhibitor of kinase activity of mutant
FLT3 receptor tyrosine kinase. Leukemia 2005, 19, 930-935.
(10) Sattler, M.; Verma, S.; Byrne, C. H.; Shrikhande, G.; Winkler, T.;
Algate, P. A.; Rohrschneider, L. R.; Griffin, J. D. BCR/ABL directly
inhibits expression of SHIP, an SH2-containing polyinositol-5-
phosphatase involved in the regulation of hematopoiesis. Mol. Cell.
Biol. 1999, 19, 7473-7480.
(11) Bo¨hmer, F. D.; Karagyozov, L.; Uecker, A.; Serve, H.; Botzki, A.;
Mahboobi, S.; Dove, S. A single amino acid exchange inverts
susceptibility of related receptor tyrosine kinases for the ATP site
inhibitor STI-571. J. Biol. Chem. 2003, 278, 5148-5155.
(12) Mahboobi, S.; Teller, S.; Pongratz, H.; Hufsky, H.; Sellmer, A.;
Botzki, A.; Uecker, A.; Beckers, T.; Baasner, S.; Schachtele, C.;
Uberall, F.; Kassack, M. U.; Dove, S.; Bo¨hmer, F.-D. Bis(1H-2-
indolyl)methanones as a Novel Class of Inhibitors of the Platelet-
Derived Growth Factor Receptor Kinase. J. Med. Chem. 2002, 45,
1002-1018.