C O M M U N I C A T I O N S
Table 1. Enantioselective [3+2] Reactions of 1,4-Benzoquinones
and 2,3-Dihydrofuran
Scheme 2. Rational Pathway for the Formation of 2 and 11 via 12
with Catalyst A
1
a Isolated yield. b Ratios of regioisomers were determined by H NMR
analysis at 400 MHz. c Enantioselectivities were determined by GC analysis
or HPLC analysis using chiral columns.6 d Structures proved by X-ray
crystallographic analysis.6
and 11 are formed from that dipolar intermediate, as shown in
Scheme 2 (see also refs 1a-1h).
The enantioselective and unusually short synthesis of aflatoxin
B2 shown in Scheme 1 illustrates the utility of the new methodology
described herein.
afforded two regioisomers, with the major regioisomer being 7
(corresponding to 2 of Scheme 1). The formation of two regio-
isomers for entries 1-3 can be understood in terms of two different
pathways involving catalyst coordination to each of the two different
quinone oxygens. Although coordination to the more basic oxygen
may predominate, the other mode of coordination probably leads
to a faster [3+2]-cycloaddition rate.2h The structures of both adducts
of entry 1 were determined unambiguously by X-ray crystal-
lographic analyses, as was the structure of the major adduct of entry
2.
Supporting Information Available: Additional experimental pro-
cedures and spectral data for reaction products (22 pages, print/PDF).
X-ray crystallographic data for 2, the 4-bromobenzoate of 2, 11, and
the products of entries 1 and 2 of Table 1. This material is available
References
(1) (a) Sibi, M.; Levi, S. M.; Craig, P. J. Am. Chem. Soc. 2005, 127, 8276-
8277. (b) Daidouji, K.; Fuchibe, K.; Akiyama, T. Org. Lett. 2005, 7,
1051-1053. (c) Yamashita, Y.; Kobayashi, S. J. Am. Chem. Soc. 2004,
126, 11279-11282. (d) Shintani, R.; Fu, G. C. J. Am. Chem. Soc. 2003,
125, 10778-10779. (e) Hodgson, D. M.; Labande, A. H.; Pierard Francois,
Y. T. M.; Esposito Castro, M. A. J. Org. Chem. 2003, 68, 6153-6159.
(f) Longmire, J. M.; Wang, B.; Zhang, X. J. Am. Chem. Soc. 2002, 124,
13400-13401. (g) Barluenga, J.; Ferna´ndez-Rodr´ıquez, M. A.; Aguilar,
E.; Ferna´ndez-Mar´ı, F.; Salinas, A.; Olano, B. Chem. Eur. J. 2001, 7,
3533-3534. (h) Seebach, D.; Lyapkalo, I. M.; Dahinden, R. HelV. Chim.
Acta 1999, 82, 1829-1842. (i) Kezuka, S.; Ohtsuki, N.; Mita, T.; Kogami,
Y.; Ashizawa, T.; Ikeno, T.; Yamada, T. Bull. Chem. Soc. Jpn. 2003, 76,
2197-2207.
(2) (a) Corey, E. J.; Shibata, T.; Lee, T. W. J. Am. Chem. Soc. 2002, 124,
3808-3809. (b) Ryu, D. H.; Lee, T. W.; Corey, E. J. J. Am. Chem. Soc.
2002, 124, 9992-9993. (c) Ryu, D. H.; Corey, E. J. J. Am. Chem. Soc.
2003, 125, 6388-6390. (d) Zhou, G.; Hu, Q.-Y.; Corey, E. J. Org. Lett.
2003, 5, 3979-3982. (e) Ryu, D. H.; Zhou, G.; Corey, E. J. J. Am. Chem.
Soc. 2004, 126, 4800-4802. (f) Hu, Q.-Y.; Rege, P. D.; Corey, E. J. J.
Am. Chem. Soc. 2004, 126, 5984-5986. (g) Hu, Q.-Y.; Zhou, G.; Corey,
E. J. J. Am. Chem. Soc. 2004, 126, 13708-13713. (h) Ryu, D.-H.; Zhou,
G.; Corey, E. J. Org. Lett. 2005, 7, 1633-1636.
In another example, the reaction of 2-methoxy-1,4-benzoquinone
with 5-dimethylphenylsilyl-2,3-dihydrofuran under the standard
conditions of Table 1 provided the [3+2]-cycloadduct 9 in 82%
yield (only regioisomer formed) and 98% ee. It is clear from this
result that additional substitution on the olefinic linkage of the vinyl
ether component is tolerated in the cycloaddition process and also
that very high regioselectivity is possible with unsymmetrical
components. Finally, when the reaction of 2-methyl-5-isopropyl-
6-methoxy-1,4-benzoquinone and 2,3-dihydrofuran was carried out
with 0.2 equiv of the S-catalyst ent-A, the [2+2]-cycloadduct 10
was obtained as the major product (25% isolated yield, 99% ee).8
(3) (a) Bu¨chi, G.; Foulkes, D. M.; Kurono, M.; Mitchell, G. F. J. Am. Chem.
Soc. 1966, 88, 4534-4536. (b) Bu¨chi, G.; Foulkes, D. M.; Kurono, M.;
Mitchell, G. F.; Schneider, R. S. J. Am. Chem. Soc. 1967, 89, 6745-
6753. (c) Roberts, J. C.; Sheppard, A. H.; Knight, J. A.; Roffey, P. J.
Chem. Soc., C: Org. 1968, 22-24.
(4) (a) Castellino, A. J.; Rapoport, H. J. Org. Chem. 1986, 51, 1006-1011.
(b) Weeratunga, G.; Home, S.; Rodrigo, R. J. Chem. Soc., Chem. Commun.
1988, 721-722. (c) Home, S.; Weeratunga, G.; Rodrigo, R. J. Chem.
Soc., Chem. Commun. 1990, 39-41. (d) Koreeda, M.; Dixon, L. A.; Hsi,
J. D. Synlett 1993, 555-556. (e) Pirrung, M. C.; Lee, Y. R. Tetrahedron
Lett. 1996, 37, 2391-2394.
A mechanistically powerful result for understanding the pathway
of the [3+2]-cycloaddition reaction leading to 2 has been obtained
by a simple trapping experiment. When the reaction of 2-methoxy-
1,4-benzoquinone and 2,3-dihydrofuran was carried out with 10
equiv of the latter and 0.2 equiv of catalyst A, the major products
were 2 (53% isolated yield, 91% ee) and the 2:1 adduct 11 (41%,
85% ee), with the structure of 11 being fully confirmed by X-ray
crystallographic analysis.6 We believe that the formation of 11
results from the trapping of a 1:1 dipolar intermediate (12 in Scheme
2) in the [3+2]-cycloaddition process. It is possible that both 2
(5) Trost, B. M.; Toste, F. D. J. Am. Chem. Soc. 2003, 125, 3090-3100.
(6) See Supporting Information for full details.
(7) Yield not optimized.
(8) For a discussion relevant to the regiochemistry of the [3+2]-cycloaddition
reactions reported herein, see ref 2h. For Ti-catalyzed [2+2]-cycloadditions
to 1,4-benzoquinones, see: Engler, T. A.; Letavic, M. A.; Rajesh, I.; La
Tessa, K. O.; Reddy, J. P. J. Org. Chem. 1999, 64, 2391-2405.
JA054503M
9
J. AM. CHEM. SOC. VOL. 127, NO. 34, 2005 11959