C O M M U N I C A T I O N S
Table 1. Ligand and Temperature Effects for Ir-Catalyzed
Enantioselective Allylic Amination of 1a with 2aa
(entry 13) or neat (entry 14) with 3.0 equiv of amine to form the
allylic amine in good yield and with excellent enantioselectivity.
Two terminal carbonates reacted less selectively. p-Nitrocinnamyl
1c was only slightly soluble in THF and gave lower regioselectivity
and enantioselectivity (86% ee, entry 9). o-Methoxy-substituted
cinnamyl carbonate 1d reacted with high regioselectivity, but the
branched product formed with only 76% ee (entry 10). Branched
allylic carbonates have, thus far, reacted to give low ee’s of
branched allylic amine after full conversion.
yield of
3 (%)c
entry
ligand
temp
rt
50 °C
50 °C
50 °C
50 °C
rt
time (h)
3/4/5b
%eed
1
2
3
4
5
6
(Ra,RC,RC)-6
(Ra,RC,RC)-6
(Sa,RC,RC)-6
(R)-7
(R)-8
(R,R)-9
10
4
72
72
72
48
98/1/1
98/2/0
84
89
66
11
25
72
95 (R)
94 (R)
75 (S)
0
61 (R)
87 (R)
93/6/1
41/43/16
72/23/5
96/2/2
In conclusion, we developed a new catalytic process to produce
branched aromatic or aliphatic secondary or tertiary allylic amines
in high yield with excellent enantioselectivity from achiral allylic
actetates and carbonates. The terminal olefin in the product can be
used to generate, for example, 1,3-amino alcohols, 1,3-diamines,
and various types of amino acids. Mechanistic understanding and
further evaluation of substrate scope will comprise future studies.
a The reaction was conducted with 1 mmol of 1a and 1.2-1.3 mmol of
2a in THF (0.5 mL) in the presence of 0.01 mmol of [Ir(cod)Cl]2 and 0.02
mmol of phosphoramidite unless otherwise noted. b Determined by 1H NMR
spectroscopy of crude reaction mixtures. c Isolated yield after silica gel
chromatography. d Determined by HPLC with a Daicel Chiralcel OD-H
column and hexane/2-PrOH/Et2NH (99.74/0.25/0.01) as eluent.
Table 2. Enantioselective Allylic Amination Catalyzed by
Ir-(Ra,RC,RC)-6a
Acknowledgment. We thank the NIH (GM-58108) for support
of this work and Johnson-Matthey for a gift of IrCl3. T.O. thanks
the JSPS for a postdoctoral fellowship.
entry
allyl carbonate
amine
time (h)
3/4/5b
yield of 3 (%)c
%eed
1
1a
1a
1a
1a
1a
1a
1a
1b
1c
1d
1e
1f
2b
2c
2d
2e
2f
2g
2h
2a
2a
2a
2a
2a
2a
2g
18
9
12
2
10
24
16
9
12
16
10
10
16
72
99/0/1
98/2/0
na
80
88
76
75
91
92
83
88
67
77
58
66
95
87
94 (-)
96 (R)
97 (-)
97 (-)
96 (-)
97 (-)
97 (-)
96 (-)
86 (-)
76 (-)
97 (+)
95 (+)
95 (-)
96 (-)
2
3
Supporting Information Available: Experimental procedures and
spectroscopic data of the reaction products (PDF). This material is
4
98/2
5
97/3
6
99/1
7e
8
98/2
99/1/0
83/13/4
95/4/1
96/2/2
88/8/4
97/3/0
96/4
References
9f
10
11
12
13g
14h
(1) Ojima, I.; Ed. Catalytic Asymmetric Synthesis, 2nd ed; Wiley-VCH: New
York, 2000.
(2) Spindler, F.; Blaser, H.-U. In Transition Metals for Organic Synthesis;
Bolm, C., Ed.; Wiley-VCH: Weinheim, 1998; Vol. 2, pp 69-80.
(3) Ohkuma, T.; Kitamura, M.; Noyori, R. In Catalytic Asymmetric Synthesis;
2nd ed; Ojima, I., Ed.; Wiley-VCH: New York, 2000; pp 1-110.
(4) Lee, N. E.; Buchwald, S. L. J. Am. Chem. Soc. 1994, 116, 5985-5986.
(5) Zhuang, W.; Hazell, R. G.; Jørgensen, K. A. Chem. Commun. 2001, 1240-
1241.
(6) Lo¨ber, O.; Kawatsura, M.; Hartwig, J. F. J. Am. Chem. Soc. 2001, 123,
4366-4367.
(7) Kawatsura, M.; Hartwig, J. F. J. Am. Chem. Soc. 2000, 122, 9546-9547.
(8) Antilla, J. C.; Wulff, W. D. Angew. Chem., Int. Ed. 2000, 39, 4518-
4521.
1g
1g
a The reaction was conducted at room temperature with 0.02 mmol
(Ra,RC,RC)-6 as noted in Table 1. b Determined by 1H NMR spectra of crude
mixtures. c Isolated yield after silica gel chromatography. d Determined by
HPLC. e Reaction conducted at 50 °C. f 2.0 equiv of 2a was used.
g Conducted in EtOH with 3.0 equiv of 2a. h Conducted neat with 3.0 equiv
of 2g.
(9) de Vries, A. H. M.; Meetsma, A.; Feringa, B. L. Angew. Chem., Int. Ed.
Engl. 1996, 35, 2374-2376.
complexes of the ligand diastereomer (Sa,RC,RC)-6 were slow, even
at 50 °C, and formed the opposite enantiomer in 66% yield and
75% ee (entry 3). Complexes of binaphthol derived ligands with
achiral and smaller substituents at nitrogen, (R)-7 and (R)-8,
produced lower ee’s than did those of (Ra,RC,RC)-6 (entries 4 and
5). Ligand (R,R)-931 with a biphenol unit gave product with a lower,
though substantial enantioselectivity of 87% (entry 6).
The scope of the allylic amination catalyzed Ir-(Ra,RC,RC)-6 is
summarized in Table 2. Reactions of 1a with primary amines such
as 4-methoxybenzylamine (2b), n-hexylamine (2c), and allylamine
(2d) gave the corresponding branched allylic amine 3 with high
selectivity over the isomeric 4 or diallylamine 5 (entries 1-3) and
with enantioselectivities from 94 to 97%. Cyclic secondary amines,
such as pyrrolidine (2e), piperidine (2f), and morpholine (2g),
reacted at room temperature (entries 4-6) to form the branched
allylic amines with enantioselectivities between 96 and 97%. The
acylic diethylamine reacted at 50 °C to form the branched product
in high yield and 97% ee (2h, entry 7).
(10) Feringa, B. L.; Pineschi, M.; Arnold, L. A.; Imbos, R.; de Vries, A. H.
M. Angew. Chem., Int. Ed. Engl. 1997, 36, 2620-2623.
(11) Lloyd-Jones, G. C.; Pfaltz, A. Angew. Chem., Int. Ed. Engl. 1995, 34,
462-464.
(12) Trost, B. M.; Hachiya, I. J. Am. Chem. Soc. 1998, 120, 1104-1105.
(13) Glorius, F.; Pfaltz, A. Org. Lett. 1999, 1, 141-144.
(14) Kondo, T.; Ono, H.; Satake, N.; Mitsudo, T.; Watanabe, Y. Organome-
tallics 1995, 14, 1945-1953.
(15) Trost, B. M.; Fraisse, P. L.; Ball, Z. T. Angew. Chem., Int. Ed. 2002, 41,
1059-1061.
(16) Takeuchi, R.; Kashio, M. J. Am. Chem. Soc. 1998, 120, 8647-8655.
(17) Evans, P. A.; Nelson, J. D. J. Am. Chem. Soc. 1998, 120, 5581-5582.
(18) Takeuchi, R.; Kitamura, N. New J. Chem. 1998, 659-660.
(19) Hayashi, T.; Yamamoto, A.; Ito, Y.; Nishioka, E.; Miura, H.; Yanagi, K.
J. Am. Chem. Soc. 1989, 111, 6301-6311.
(20) von Matt, P.; Lo´ıseleur, O.; Koch, G.; Pfaltz, A.; Lefeber, C.; Feucht, T.;
Helmchen, G. Tetrahedron: Asymmetry 1994, 5, 573-584.
(21) Togni, A.; Burckhardt, U.; Gramlich, V.; Pregosin, P. S.; Salzmann, R.
J. Am. Chem. Soc. 1996, 118, 1031-1037.
(22) Burckhardt, U.; Baumann, M.; Trabesinger, G.; Gramlich, V.; Togni, A.
Organometallics 1997, 16, 5252-5259.
(23) Burckhardt, U.; Baumann, M.; Togni, A. Tetrahedron: Asymmetry 1997,
8, 155-159.
(24) You, S.-L.; Zhu, X.-Z.; Luo, Y.-M.; Hou, X.-L.; Dai, L.-X. J. Am. Chem.
Soc. 2001, 123, 7471.
Other aromatic and heteroaromic derivatives of carbonate 1a also
reacted with 2a in high yield and enantioselectivity. p-Methoxy-
cinnamyl methyl carbonate (1b) reacted with 2a to form branched
3 with 88% yield and 96% ee (entry 8). Furanyl 1e formed 3 in
acceptable yield and excellent enantioselectivity (entry 11). Perhaps
most impressive, the complex of (Ra,RC,RC)-6 catalyzed the allylic
amination of (E)-2-hexenyl methyl carbonate (1f, entry 12) with
high enantioselectivity. Although the yield was moderate because
of slightly lower regioselectivity, the enantiomeric excess was 95%.
The reaction also occurred with cinnamyl acetate 1g in ethanol
(25) Hayashi, T.; Kishi, K.; Yamamoto, A.; Ito, Y. Tetrahedron Lett. 1990,
31, 1743-1746.
(26) Johannsen, M.; Jørgensen, K. A. Chem. ReV. 1998, 98, 1689-1708.
(27) Takeuchi, R.; Ue, N.; Tanabe, K.; Yamashita, K.; Shiga, N. J. Am. Chem.
Soc. 2001, 123, 9525-9534.
(28) Evans, P. A.; Robinson, J. E.; Nelson, J. D. J. Am. Chem. Soc. 1999,
121, 6761-6762.
(29) Bartels, B.; Helmchen, G. Chem. Commun. 1999, 741-742.
(30) Bartels, B.; Garcia-Yebra, C.; Rominger, F.; Helmchen, G. Eur. J. Inorg.
Chem. 2002, 2569-2586.
(31) Alexakis, A.; Rosset, S.; Allamand, J.; March, S.; Guillen, F.; Benhaim,
C. Synlett 2001, 1375-1378.
JA028614M
9
J. AM. CHEM. SOC. VOL. 124, NO. 51, 2002 15165