analysis, intermediate 2 could be assembled via the formal
three-component coupling of aldehydes 3 and 4 with al-
lylborane 7a. Further simplification of intermediate 4 sug-
gests that this fragment could be accessed from aldehydes
511 and 612 via a similar approach.
Our efforts toward the C(1)-C(11) fragment were initiated
by the synthesis of the key 1,5-diol intermediate 10 (Scheme
1). Following our previously developed methodology,10
Scheme 1. Optimization of Synthesis of Key 1,5-Diol
Fragment 10
Figure 1. Retrosynthetic analysis of peloruside A.
pleted a total synthesis of 1.8 In addition, many research
groups have reported studies directed toward the synthesis
of fragments of the peloruside A backbone.9 We report herein
our synthetic studies culminating in an efficient synthesis
of the C(1)-C(11) fragment 4 of peloruside A.
Our retrosynthetic analysis of 1 is outlined in Figure 1.
Peloruside A can be simplified into a seco-acid precursor 2
by disconnection of the macrolactone and hemiketal ring
systems. We envisioned that 2 could be assembled by using
two applications of the double allylboration methodology
recently developed in our laboratory.10 According to this
a Enantiomeric excess values calculated via the Mosher ester
method.
(7) Liao, X.; Wu, Y.; De Brabander, J. K. Angew. Chem., Int. Ed 2003,
42, 1648.
(8) Jin, M.; Taylor, R. E. Org. Lett. 2005, 7, 1303.
l
treatment of aldehyde 511 with the Ipc-derived γ-boryl-
(9) (a) Roulland, E.; Ermolenko, M. S. Org. Lett. 2005, 7, 2225. (b)
Cox, J. M.; Furuichi, N.; Zheng, C. S.; Smith, A. B. Abstracts of Papers,
228th National Meeting of the American Chemical Society, Philadelphia,
August 22-26, 2004; American Chemical Society: Washington, DC, 2004;
ORGN-378. (c) Engers, D. W.; Bassindale, M. J.; Pagenkopf, B. L. Org.
Lett. 2004, 6, 663. (d) Liu, B.; Zhou, W.-S. Org. Lett. 2004, 6, 71. (e)
Gurjar, M. K.; Pedduri, Y.; Ramana, C. V.; Puranik, V. G.; Gonnade, R.
G. Tetrahedron Lett. 2004, 45, 387. (f) Stocker, B. L.; Teesdale-Spittle, P.;
Hoberg, J. O. Eur. J. Org. Chem. 2004, 2, 330. (g) Heady, T. N.; Crimmins,
M. T. Abstracts of Papers, 225th National Meeting of the American
Chemical Society, New Orleans, March 23-27, 2003; American Chemical
Society: Washington, DC, 2004; ORGN-408. (h) Taylor, R. E.; Jin, M.
Org. Lett. 2003, 5, 4959. (i) Ghosh, A. K.; Kim, J.-H. Tetrahedron Lett.
2003, 44, 7659. (j) Paterson, I.; Di Francesco, M. E.; Ku¨hn, T. Org. Lett.
2003, 5, 599. (k) Ghosh, A. K.; Kim, J.-H. Tetrahedron Lett. 2003, 44,
3967. (l) Vergin, A. J. B.; Ryba, T. D. Abstracts of Papers, 225th National
Meeting of the American Chemical Society, New Orleans, March 23-27,
2003; American Chemical Society: Washington, DC, 2004; CHED-494.
(m) Smalley, M. K.; Hoye, T. R.; Tennakoon, M. Abstracts of Papers, 221th
National Meeting of the American Chemical Society, San Diego, April 1-5,
2001; American Chemical Society: Washington, DC, 2001; CHED-234.
substituted allylborane 7a (prepared in situ from the hy-
droboration of allene 810 with (lIpc)2BH13) followed by
introduction of aldehyde 612 provided the desired 1,5-diol
(10) as a single diastereomer in 77% yield and 85% ee (entry
1).14 Attempts to improve the enantioselectivity of the first
allylation event (5 f 9) indicated that the enantioselectivity
was essentially insensitive to the reaction solvent (entries
(10) Flamme, E. M.; Roush, W. R. J. Am. Chem. Soc. 2002, 124, 13644.
(11) (a) Asari, T.; Ishikawa, S.; Sasaki, T.; Katada, J.; Hayashi, Y.;
Harada, T.; Yano, M.; Yasuda, E.; Uno, I.; Ojima, I. Bioorg. Med. Chem.
Lett. 1997, 7, 2099. (b) Chiba, T.; Sakaki, J.; Takahashi, T.; Aoki, K.;
Kamiyama, A.; Kaneko, C.; Sato, M. J. Chem. Soc., Perkin Trans. 1 1987,
1, 1845.
(12) Overman, L. E.; Bell, K. L.; Ito, F. J. Am. Chem. Soc. 1984, 106,
4192.
(13) Brown, H. C.; Singaram, B. J. Org. Chem. 1984, 49, 945.
3942
Org. Lett., Vol. 7, No. 18, 2005