COMMUNICATIONS
Polymerization reactions: A 1-L glass autoclave was charged with toluene
(200 mL) and triisobutylaluminum (0.5 mL). The mixture was stirred
(700 rpm), thermostated at 258C, and saturated with ethylene (2 bar). The
polymerization reaction was started by the injection of a solution of the
respective zwitterionic complex in toluene, generated in situ by treatment
of 8a or 8b (ca. 35 mmol) with an equimolar amount of B(C6F5)3 in toluene
(8 mL). After 1 h the reaction was quenched by adding aqueous HCl in
methanol (15 mL). The polymer was precipitated with additional methanol
(100 mL), collected by filtration, washed with 6n aqueous HCl (100 mL),
water (200 mL), acetone (50 mL), and then dried in vacuo.
2005 2007; B. L. Small, M. Brookhart, J. Am. Chem. Soc. 1998, 120,
7143 7144; S. A. Svejda, L. K. Johnson, M. Brookhart, J. Am. Chem.
Soc. 1999, 121, 10634 10635; NMR characterization: G. B. Galland,
R. F. de Souza, R. S. Mauler, F. F. Nunes, Macromolecules 1999, 32,
1620 1625.
[17] Programs used: data collection COLLECT (B. V. Nonius, 1998), data
reduction Denzo-SMN (Z. Otwinowski, W. Minor, Methods in
Enzymol. 1997, 276, 307 326), absorption correction SORTAV
(R. H. Blessing, Acta Crystallogr. Sect. A 1995, 51, 33 37 ; R. H.
Blessing, J. Appl. Crystallogr. 1997, 30, 421 426), structure solution
SHELXS-97(G. M. Sheldrick, Acta Crystallogr. Sect. A 1990, 46, 467
473), structure refinement SHELXL-97 (G. M. Sheldrick, Universit‰t
Gˆttingen, 1997), graphics SCHAKAL (E. Keller, Universit‰t Frei-
burg, 1997).
Received: March 20, 2002 [Z18937]
[1] H.-H. Brintzinger, D. Fischer, R. M¸lhaupt, B. Rieger, R. M. Way-
mouth, Angew. Chem. 1995, 107, 1255 1283; Angew. Chem. Int. Ed.
Engl. 1995, 34, 1143 1170.
[2] G. J. P. Britovsek, V. C. Gibson, D. F. Wass, Angew. Chem. 1999, 111,
448 468; Angew. Chem. Int. Ed. 1999, 38, 428 447; S. D. Ittel, L. K.
Johnson, M. Brookhart, Chem. Rev. 2000, 100, 1169 1203.
[3] X. Yang, C. L. Stern, T. J. Marks, J. Am. Chem. Soc. 1994, 116, 10015
10031.
[4] H. Sinn, W. Kaminsky, Adv. Organomet. Chem. 1980, 18, 99 149; X.
Yang, C. L. Stern, T. J. Marks, J. Am. Chem. Soc. 1991, 113, 3623
3625; J. C. W. Chien, W.-M. Tsai, M. D. Rausch, J. Am. Chem. Soc.
1991, 113, 8570 8571; M. Bochmann, A. J. Jaggar, J. C. Nicholls,
Angew. Chem. 1990, 102, 830 832; Angew. Chem. Int. Ed. Engl. 1990,
29, 780 782; review: E. Y.-X. Chen, T. J. Marks, Chem.Rev. 2000, 100,
1391 1434.
[5] B. Temme, G. Erker, J. Karl, H. Luftmann, R. Frˆhlich, S. Kotila,
Angew. Chem. 1995, 107, 1867 1869; Angew. Chem. Int. Ed. Engl.
1995, 34, 1755 1757; review: G. Erker, Acc. Chem. Res. 2001, 34, 309
317.
[6] M. Dahlmann, G. Erker, M. Nissinen, R. Frˆhlich, J. Am. Chem. Soc.
1999, 121, 2820 2828; M. Dahlmann, G. Erker, K. Bergander, J. Am.
Chem. Soc. 2000, 122, 7986 7998.
[7] T. M. Kooistra, Q. Knijnenburg, J. M. M. Smits, A. D. Horton, P. H. M.
Budzelaar, A. W. Gal, Angew. Chem. 2001, 113, 4855 4858; Angew.
Chem. Int. Ed. 2001, 40, 4719 4722.
[8] V. C. Gibson, M. J. Humphries, K. P. Tellmann, D. F. Wass, A. J. P.
White, D. J. Williams, Chem. Commun. 2001, 2252 2253.
[9] Electron transfer had previously been observed or used in activation
processes of metallocene Ziegler Natta catalysts: R. F. Jordan, Adv.
Organomet. Chem. 1991, 32, 325 387.
[10] For recent evidence of electron-transfer processes occurring in
B(C6F5)3 activation chemistry see, for example: C. J. Harlan, T.
Hascall, E. Fujita, J. R. Norton, J. Am. Chem. Soc. 1999, 121, 7 27 4
7275; C. J. Beddows, A. D. Burrows, N. G. Connelly, M. Green, J. M.
Lynam, T. J. Paget, Organometallics 2001, 20, 231 233; R. J. Kwaan,
C. J. Harlan, J. R. Norton, Organometallics 2001, 20, 3818 3820.
Photoactivatable Synthetic Ras Proteins:
™Baits∫ for the Identification of Plasma-
Membrane-Bound Binding Partners of Ras**
J¸rgen Kuhlmann,* Andreas Tebbe, Martin Vˆlkert,
Melanie Wagner, Koji Uwai, and Herbert Waldmann*
The regulation of cell growth and differentiation by
proteins of the Ras superfamily[1] requires the correct
subcellular distribution of the small GTP-binding proteins
(GTP guanosine triphosphate).[2] The biological function of
Ras is strictly dependent on its correct translocation to the
plasma membrane, and this localization is directly linked to
posttranslational S-farnesylation and S-palmitoylation of Ras.[3]
The real mechanism of translocation is still the subject of
debate. On the one hand for K-RasB, which embodies a
polycationic hexalysine stretch and a farnesyl thioether at the
C terminus, a model was proposed in which unspecific but
highly anionic ™sites∫ (formed at least in part by the lipid
bilayer) at the plasma membrane instead of a classical specific
proteinaceous receptor are responsible for association of this
Ras isoform with the plasma membrane.[4] On the other hand
for H- and N-Ras, which have S-farnesyl and S-palmitoyl
substituents at the C terminus, a membrane-trapping model[5]
was postulated in which a prenyl protein specific palmitoyl-
[11] For
a formally related homogeneous alkyl-free Group 4 metal
[*] Dr. J. Kuhlmann, Dipl.-Biochem. A. Tebbe,
Dipl.-Biochem. M. Wagner
Ziegler Natta catalyst see: J. Cano, P. Royo, M. Lanfranchi, M. A.
Pellinghelli, A. Tiripicchio, Angew. Chem. 2001, 113, 2563 2565;
Angew. Chem. Int. Ed. 2001, 40, 2495 2497, J. Jin, D. R. Wilson,
E. Y.-x. Chen, Chem. Commun. 2002, 708 709, and references
therein.
Max-Planck-Institut f¸r molekulare Physiologie
Abteilung Strukturelle Biologie
Otto-Hahn-Strasse 11, 44227Dortmund (Germany)
Fax : (49)231-133-1435
[12] H. Yasuda, Y. Kajihara, K. Mashima, K. Nagasuna, K. Lee, A.
Nakamura, Organometallics, 1982, 1, 388 396, and references therein.
[13] J. C. M. Sinnema, G. H. B. Fendesak, H. tom Dieck, J. Organomet.
Chem. 1990, 390, 237 250.
[14] A. G. Massey, A. J. Park, J. Organomet. Chem. 1964, 2, 245 250;
A. G. Massey, A. J. Park in Organometallic Synthesis, Vol. 3, (Eds.:
R. B. King, J. J. Eisch), Elsevier, New York, 1986, p. 461.
[15] For structurally related metallocene complexes with metals of Group
4 see: J. Karl, G. Erker, R. Frˆhlich, J. Organomet. Chem. 1997, 535,
59 62; M. Dahlmann, G. Erker, R. Frˆhlich, O. Meyer, Organo-
metallics 2000, 19, 2956 2967.
Prof. Dr. H. Waldmann, Dipl.-Chem. M. Vˆlkert, Dr. K. Uwai
Max-Planck-Institut f¸r molekulare Physiologie
Abteilung Chemische Biologie
Otto-Hahn-Strasse 11, 44227Dortmund (Germany)
and
Fb. 3, Organische Chemie, Universit‰t Dortmund
Otto-Hahn-Strasse 6, 44227Dortmund (Germany)
Fax : (49)231-133-2499
[**] We thank Christine Nowak for excellent technical assistance, Lilianna
Wielitzek for help with the UV exposure system, and Fred Wit-
tinghofer for continuous encouragement. The work was supported by
the Fonds der Chemischen Industrie and the Alexander von Hum-
boldt Foundation.
[16] The resulting polyethylene contains mostly methyl branches, as
expected: L. K. Johnson, C. M. Killian, M. Brookhart, J. Am. Chem.
Soc. 1995, 117, 6414 6415; C. M. Killian, D. J. Tempel, L. K. Johnson,
M. Brookhart, J. Am. Chem. Soc. 1996, 118, 11664 11665; C. M.
Killian, L. K. Johnson, M. Brookhart, Organometallics 1997, 16,
2546
¹ WILEY-VCH Verlag GmbH, 69451 Weinheim, Germany, 2002
1433-7851/02/4114-2546 $ 20.00+.50/0
Angew. Chem. Int. Ed. 2002, 41, No. 14