Organo-Tricyanoborates as Tectons
also exhibit host-guest behavior.7 Mixed-ligand cyanometa-
lates also form discrete cages,8,9 which can exhibit highly
selective host-guest behavior reminiscent of the parent solid-
state materials.10,11
Scheme 1
Previous work on molecular tricyanometalates has em-
phasized cuboidal cages.9,10,12 These box-like structures are
a natural consequence of the ∼90° NC-M-CN angles of
the tricyanometalate precursors. In an effort to develop new
structural families of cyanometalate cages, we sought tricy-
ano building blocks with NC-M-CN angles > 90°. Such
building blocks could, for example, stabilize adamantanoid
cages. Our attention was drawn to the recently reported
coordination solid {Ag[FB(CN)3]}, formed from the reaction
of AgNO3, NaF, and K[B(CN)4].13 We decided to examine
the coordination chemistry of a range of [RB(CN)3]-
precursors, which we envisioned could be synthesized with
diverse substituents (H, alkyl, aryl) for use as building blocks.
The promise of this approach is illustrated by our recent
synthesis of the hexagonal prism {[PhB(CN)3]6[RhCp*]6}6+.14
Although salts of [B(CN)4]- have been well-studied,15-18
fewer of the tricyanoborates are known; these include Na-
[HB(CN)3],18 M[BF(CN)3] (M ) Li, K),17 and Me3SiNCBF-
(CN)3.17 Only limited coordination chemistry has been
reported for the tricyanides.
begins with the reaction of HBBr2 and AgCN.18,19 Conversion
of the resulting coordination polymer Ag[HB(NC)3]18 into
the more soluble Na+ salt via reduction with metallic Na
proved difficult to reproduce. We found, however, that
sodium sulfide smoothly and quantitatively converted Ag[H-
B(NC)3] into the desired Na[HB(NC)3]. This sodium salt was
transformed into the air-stable salt PPN[HB(NC)3] (PPN )
[N(PPh3)2]+), which, in refluxing Bu2O, rearranged into PPN-
[HB(CN)3] (Scheme 1).
The previously rare20 organocyanoborates can be prepared
by the AgCN route via the organo-triisocyanoborate, Et4N-
[PhB(NC)3], which was fully characterized. Direct cyanation
with KCN is easier, however. Thus, [K(18-crown-6)][PhB-
(CN)3] was synthesized via the reaction of PhBCl2 and 3
equiv of KCN in the presence of the crown ether in a THF
solution. This air-stable colorless salt was purified chro-
matographically and characterized by electrospray ionization
mass spectrometry (ESI-MS) as well as by 1H and 11B NMR
spectroscopy. The octyl analogue, [K(18-crown-6)][octB-
(CN)3], was prepared and characterized similarly.
Results and Discussion
Synthesis of [RB(CN)3]- and [RB(NC)3]-. The basic
chemistry of [HB(CN)3]- has been developed by Gyo¨ri et
al., who synthesized this anion via a multistep process that
Characterization of Et4N[PhB(CN)3] and Et4N[PhB-
(NC)3]. To further distinguish the isomeric boron tricyanides
and triisocyanides, we examined the Et4N+ salts of the Ph
derivatives of both. Regarding the IR spectra, νCN for Et4N-
[PhB(CN)3] is weak but occurs at a higher frequency than
Et4N[PhB(NC)3] (Figure 2), consistent with the literature,18,19
and as also seen for PPN[HB(CN)3] and PPN[HB(NC)3]. The
13C NMR spectrum of Et4N[PhB(CN)3] showed a 11B-
coupled quartet (J ) 66 Hz) at δ 130 assigned to BCN. For
comparison, J(B,C) coupling in [BFn(CN)4-n]- ranges from
71 to 90 Hz,17 but no such coupling was observed for Et4N-
[PhB(NC)3]. These two compounds are further distinguished
by their 11B NMR spectra, the cyanide and isocyanide
displaying singlets at δ -28.6 and -13.4, respectively.
Synthesis of [RGa(CN)3]- (R ) Bu, C6H2-2,4,6-Me3).
Both Ga(CN)3 and salts of [Ga(CN)4]- are known,21 but
otherwise, no work has been reported on the organic
derivatives. We attempted to prepare [BuGa(CN)3]- using
[K(18-crown-6)]CN and BuGaCl2. ESI-MS analysis showed,
(7) Beauvais, L. G.; Shores, M. P.; Long, J. R. J. Am. Chem. Soc. 2000,
122, 2763-72. Fedin, V. P.; Kalinina, I. V.; Virovets, A. V.; Fenske,
D. Russ. Chem. Bull. 2001, 50, 1525-28. Fedin, V. P.; Virovets, A.
V.; Kalinina, I. V.; Ikorskii, V. N.; Elsegood, M. R. J.; Clegg, W.
Eur. J. Inorg. Chem. 2000, 2341-43. Kalinina, I. V.; Pervukhina, N.
V.; Podberezskaya, N. V.; Fedin, V. P. Russ. J. Coord. Chem. 2002,
28, 389-93. Bennett, M. V.; Beauvais, L. G.; Shores, M. P.; Long, J.
R. J. Am. Chem. Soc. 2001, 123, 8022-32.
(8) Klausmeyer, K. K.; Rauchfuss, T. B.; Wilson, S. R. Angew. Chem.,
Int. Ed. 1998, 37, 1694-96. Contakes, S. M.; Rauchfuss, T. B. Angew.
Chem., Int. Ed. 2000, 39, 1984-86. Contakes, S. M.; Klausmeyer, K.
K.; Milberg, R. M.; Wilson, S. R.; Rauchfuss, T. B. Organometallics
1998, 17, 3633-35. Heinrich, J. L.; Berseth, P. A.; Long, J. R. Chem.
Commun. 1998, 1231-32. Sokol, J. J.; Shores, M. P.; Long, J. R.
Inorg. Chem. 2002, 41, 3052-54. Sokol, J. J.; Shores, M. P.; Long,
J. R. Angew. Chem., Int. Ed. 2001, 40, 236-39.
(9) Contakes, S. M.; Kuhlman, M. L.; Ramesh, M.; Wilson, S. R.;
Rauchfuss, T. B. Proc. Nat. Acad. Sci. U.S.A. 2002, 99, 4889-93.
(10) Kuhlman, M. L.; Rauchfuss, T. B. J. Am. Chem. Soc. 2003, 125,
10084-92.
(11) Hsu, S. C. N.; Ramesh, M.; Espenson, J. H.; Rauchfuss, T. B. Angew.
Chem., Int. Ed. 2003, 42, 2663-66.
(12) Hsu, J. K.; Bonangelino, C. J.; Kaiwar, S. P.; Boggs, C. M.; Fettinger,
J. C.; Pilato, R. S. Inorg. Chem. 1996, 35, 4743-51.
(19) Gyo¨ri, B.; Berente, Z. Inorg. Chem. 2001, 40, 1770-78. Gyo¨ri, B.;
Berente, Z.; Kiraly, R.; La´za´r, I. J. Chem. Soc., Perkin Trans. 1 2002,
300-01. Gyo¨ri, B.; Berente, Z.; Kova´cs, Z. Inorg. Chem. 1998, 37,
5131-41. Gyo¨ri, B.; Berente, Z.; La´za´r, I. Polyhedron 1998, 17,
3175-80. Emri, J.; Gyo¨ri, B. J. Chem. Soc., Chem. Commun. 1983,
1303-4. Emri, J.; Gyo¨ri, B. Polyhedron 1983, 2, 1273-9. Emri, J.;
Gyo¨ri, B. Polyhedron 1994, 13, 2353-7. Emri, J.; Kova´cs, Z.; Gyo¨ri,
B. Inorg. Chim. Acta 1995, 233, 119-25.
(20) Hunter, R.; Haueisen, R. H.; Irving, A. Angew. Chem., Int. Ed. Engl.
1994, 33, 566-8. Vei, I. C.; Pascu, S. I.; Green, M. L. H.; Green, J.
C.; Schilling, R. E.; Anderson, G. D. W.; Rees, L. H. Dalton Trans.
2003, 2550-57.
(21) Brousseau, L. C.; Williams, D.; Kouvetakis, J.; O’Keeffe, M. J. Am.
Chem. Soc. 1997, 119, 6292-96.
(13) Hamilton, B. H.; Ziegler, C. J. Chem. Commun. 2002, 842-43.
(14) Kuhlman, M. L.; Yao, H.; Rauchfuss, T. B. Chem. Commun. 2004,
1370-71.
(15) Bernhardt, E.; Finze, M.; Willner, H. Z. Anorg. Allg. Chem. 2003,
629, 1229-34. Berkei, M.; Bernhardt, E.; Schu¨rmann, M.; Mehring,
M.; Willner, H. Z. Anorg. Allg. Chem. 2002, 628, 1734-40.
(16) Ku¨ppers, T.; Bernhardt, E.; Willner, H.; Rohm, H. W.; Ko¨ckerling,
M. Inorg. Chem. 2005, 44, 1015-22.
(17) Bernhardt, E.; Berkei, M.; Willner, H.; Schu¨rmann, M. Z. Anorg. Allg.
Chem. 2003, 629, 677-85.
(18) Gyo¨ri, B.; Emri, J.; Fehe´r, I. J. Organomet. Chem. 1983, 255, 17-
28.
Inorganic Chemistry, Vol. 44, No. 18, 2005 6257