synthetic bacteria as well as the use in molecular conductive
wires and optoelectronic devices have received extensive
attention.7 Although considerable efforts have been made for
exploration of multiporphyrin arrays with flexible8 and rigid
dendrons,9 to develop π-conjugated porphyrin-containing
dendrimers as the core and/or as the bridge for the nano-
materials has still been of recent concern.
Scheme 1a
In this contribution, we present a series of π-conjugated
nanosized macromolecules containing two chromophores
(porphyrin and truxene moieties). For example, the diameter
of 3 is ca. 5.2 nm (see SI S19-S21), which represents one
of the largest known conjugated dendrimers based on
prophyrin.9 We also develop a highly convenient diversity
approach to such porphyrin-containing π-conjugated den-
drimers through the Suzuki coupling and the Lindsey
reactions. We achieve highly intense red light emission from
1-6, because truxene moieties with long alkyl chains
radically enhance the solubility and suppress the aggregation
in solid states and obviously reduce the self-quench of
porphyrin’s fluorescence.
The readily available starting material 14 was reported in
our previous contributions.10 Scheme 1 shows the approach
to 7-12 as the precursors of 1-6. The Suzuki cross-coupling
reaction of tribromotruxene with 4-formylbenzeneboronic
acid catalyzed by Pd(PPh3)4 in a mixture of THF and aqueous
sodium carbonate solutions provided 7 in moderate yield
(70%). Finally, we obtained 8, 9, 10, and 12 from 7 and 11
from 13 in good yields (70-90%) by using various aryl-
(4) (a) Ma, H.; Jen, A. K.-Y. AdV. Mater. 2001, 13, 1201. (b) Goodson,
T. G., III. Acc. Chem. Res. 2005, 38, 99. (c) Porre`s, L.; Mongin, O.; Katan,
C.; Charlot, M.; Pons, T.; Mertz, J.; Blanchard-Desce, M. Org. Lett. 2004,
6, 47. (d) Drobizhev, M.; Karotki, A.; Dzenis, Y.; Rebane, A.; Suo, Z.;
Spangler, C. W. J. Phys. Chem. B 2003, 107, 7540. (e) Drobizhev, M.;
Karotki, A.; Kruk, M.; Dzenis, Y.; Rebane, A.; Suo, Z.; Spangler, C. W. J.
Phys. Chem. B 2004, 108, 4221.
a Reagents and conditions: (a) 4-formylbenzeneboronic acid,
Pd(PPh3)4, THF, reflux; (b) arylboronic acid, Pd(PPh3)4, THF,
reflux; (c) NBS, CH2Cl2/acetic acid, 0 °C; (d) 2-thiophenylboronic
acid, Pd(PPh3)4, THF, reflux.
(5) (a) Liu, D.; Zhang, H.; Grim, P. C. M.; De Feyter, S.; Wiesler, U.-
M.; Berresheim, A. J.; Mu¨llen, K.; De Schryver, F. C. Langmuir 2002, 18,
2385. (b) Loi, S.; Butt, H.-J.; Hampel, C.; Bauer, R.; Wiesler, U.-M.; Mu¨llen,
K. Langmuir 2002, 18, 2398.
boronic acids. Bromination of 10 with NBS in CH2Cl2 and
acetic acid (v/v ) 1:1) afforded 13 (90%).
(6) The Porphyrins; Dolphin, D., Ed.; Academic Press: New York, 1978.
(7) (a) Choi, M.-S.; Yamazaki, T.; Yamazaki, I.; Aida, T. Angew. Chem.,
Int. Ed. 2004, 43, 150. (b) Imahori, H. J. Phys. Chem. B 2004, 108, 6130.
(8) (a) Zimmerman, S. C.; Wendland, M. S.; Rakow, N. A.; Zharov, I.;
Suslick, K. S. Nature 2002, 418, 399. (b) Kano, K.; Nishiyabu, R.;
Yamazaki, T.; Yamazaki, I. J. Am. Chem. Soc. 2003, 125, 10625. (c)
Finikova, O.; Galkin, A.; Rozhkov, V.; Cordero, M.; Ha¨gerha¨ll, C.;
Vinogradov, S. J. Am. Chem. Soc. 2003, 125, 4882. (d) Adronov, A.;
Fre´chet, J. M. J. Chem. Commun. 2000, 18, 1701. (e) Uyemura, M.; Aida,
T. J. Am. Chem. Soc. 2002, 124, 11392. (f) Rozhkov, V.; Wilson, D.;
Vinogradov, S. Macromolecules 2002, 35, 1991. (g) Harth, E. M.; Hecht,
S.; Helms, B.; Malmstrom, E. E.; Fre´chet, J. M. J.; Hawker, C. J. J. Am.
Chem. Soc. 2002, 124, 3926. (h) Yamaguchi, T.; Ishii, N.; Tashiro, K.;
Aida, T. J. Am. Chem. Soc. 2003, 125, 13934. (i) Yamaguchi, T.; Kimura,
T.; Matsuda, H.; Aida, T. Angew. Chem., Int. Ed. 2004, 43, 6350. (j) Jang,
W.-D.; Nishiyama, N.; Zhang, G.-D.; Harada, A.; Jiang, D.-L.; Kawauchi,
S.; Morimoto, Y.; Kikuchi, M.; Koyama, H.; Aida, T.; Kataoka, K. Angew.
Chem., Int. Ed. 2005, 44, 419. (k) Kim, Y.; Mayer, M. F.; Zimmerman, S.
C. Angew. Chem., Int. Ed. 2003, 42, 1121.
(9) (a) Imaoka, T.; Horiguchi, H.; Yamamoto, K. J. Am. Chem. Soc.
2003, 125, 340. (b) Capitosti, G. J.; Guerrero, C. D.; Binkley, D. E., Jr.;
Rajesh, C. S.; Modarelli, D. A. J. Org. Chem. 2003, 68, 247. (c) Pillow, J.
N. G.; Halim, M.; Lupton, J. M.; Burn, P. L.; Samuel, I. D. W.
Macromolecules 1999, 32, 5985. (d) Ayabe, M.; Ikeda, A.; Kubo, Y.;
Takeuchi, M.; Shinkai, S. Angew. Chem., Int. Ed. 2002, 41, 2790. (e) Kim,
D.; Osuka, A. Acc. Chem. Res. 2004, 37, 735. (f) Kimura, M.; Saito, Y.;
Ohta, K.; Hanabusa, K.; Shirai, H.; Kobayashi, N. J. Am. Chem. Soc. 2002,
124, 5274. (g) Sugiura, K. Top. Curr. Chem. 2003, 228, 65. (h) Li, B.; Li,
J.; Fu, Y.; Bo, Z. J. Am. Chem. Soc. 2004, 126, 3430.
As outlined in Scheme 2, the products through the Adler
reaction using propionic acid as the catalyst and solvent were
too difficult to be purified.11 Trifluoroacetic acid was not
powerful enough to construct such large molecules.12 For-
tunately, the condensation of 7-12 with distilled pyrrole
using BF3‚Et2O and ethanol as catalyst and CH2Cl2 as solvent
in an aerobic dark environment, following by DDQ oxidation
and Et3N neutralization, afforded porphyrins 1-6 at about
20% yields.13 We also employed the Suzuki reaction of 1
with various arylboronic acid to produce 2-6; however, the
yields were quite low and it was difficult to purify the desired
products.14 Therefore, such fairly convenient and highly
diversified convergent strategy provides us the possibility
to develop nanosized π-conjugated porphyrins with various
aromatic substituents at outermost.
(11) Adler, A. D.; Longo, F. R.; Finarelli, J. D.; Goldmacher, J.; Assour,
J.; Korsakoff, L. J. Org. Chem. 1967, 32, 476.
(12) Lindsey, J. S.; Schreiman, I. C.; Hsu, H. C.; Kearney, P. C.;
Marguerettaz, A. M. J. Org. Chem. 1987, 52, 827.
(13) Vollmer, M. S.; Wu¨rthner, F.; Effenberger, F.; Emele, P.; Meyer,
D. U.; Stu¨mpfig, T.; Port, H.; Wolf, H. C. Chem. Eur. J. 1998, 4, 260.
(14) Kimura, M.; Shiba, T.; Muto, T.; Hanabusa, K.; Shirai, H.
Macromolecules 1999, 32, 8237.
(10) Pei, J.; Wang, J.-L.; Cao, X.-Y.; Zhou, X.-H.; Zhang, W.-B. J. Am.
Chem. Soc. 2003, 125, 9944.
4072
Org. Lett., Vol. 7, No. 19, 2005