ORGANIC
LETTERS
Total Synthesis of (−)-Pironetin†
2003
Vol. 5, No. 3
265-268
Luiz C. Dias,* Luciana G. de Oliveira, and Ma´rcio A. de Sousa
Instituto de Qu´ımica, UniVersidade Estadual de Campinas, UNICAMP,
C.P. 6154 13083-970, Campinas, SP, Brazil
Received October 31, 2002
ABSTRACT
The asymmetric total synthesis of pironetin, a compound that shows plant growth regulatory activity, immunosuppressive as well as a remarkable
antitumoral activity, is described. The approach involves the use of three very efficient Evans oxazolidinone-mediated syn-aldol condensations,
a high-yielding coupling between lithium acetylide ethylenediamine complex and a tosylate followed by methylation, and selective reduction
to establish the C12−C13 (E) double bond.
Pironetin1 or PA-48153C2 (1) is an unsaturated δ-lactone
derivative, which was isolated independently by two research
groups from Streptomyces sp. NK10958 and from the
fermentation broths of Streptomyces prunicolor PA-48153,
respectively. This very interesting compound possesses plant
growth regulatory and immunosuppressive activities. Re-
cently, the biological effects of 1 and its derivatives on cell
cycle progression and antitumor activities were reported.3
More importantly, the mode of action of 1 is different from
those established for the immunosuppressants cyclosporin
A (CsA) and FK506 that inhibit T cell activation.4 Pironetin
showed suppressive effects on the responses of T and B
lymphocytes to mitogens.
The structure of pironetin has been suggested mainly by
spectral methods, the relative stereochemistry has been
determined by X-ray analysis, and the absolute configuration
has been confirmed by total synthesis.5,6 In a recent paper,
Osada et al. showed that the R,â-unsaturated lactone, the
chirality at the C7-position bearing a hydroxyl group, and
the terminal portion of the alkyl chain are important for
microtubule inhibitory activity of pironetins.3,6h To provide
material for more extensive biological evaluation, and to
develop a synthetic strategy useful for the preparation of
promising new derivatives of pironetin, we have undertaken
its total synthesis.
The illustrated structural examination of 1 revealed that
all syn stereocenters are present in pairs represented by C4-
C5, C7-C8, and C9-C10 units (Scheme 1).7 For introduc-
tion of these stereochemical centers, we explored three Evans
* Address correspondence to this author. FAX: +55-019-3788-3023.
† This paper is dedicated to Prof. Albert Kascheres on the occasion of
his 60th birthday and also to the Brazilian Chemical Society (SBQ).
(1) (a) Kobayashi, S.; Tsuchiya, K.; Harada, T.; Nishide, M.; Kurokawa,
T.; Nakagawa, T.; Shimada, N.; Kobayashi, K. J. Antibiot. 1994, 47, 697.
(b) Kobayashi, S.; Tsuchiya, K.; Kurokawa, T.; Nakagawa, T.; Shimada,
N.; Iitaka, Y. J. Antibiot. 1994, 47, 703. (c) Tsuchiya, K.; Kobayashi, S.;
Harada, T.; Nishikiori, T.; Nakagawa, T.; Tatsuta, K. J. Antibiot. 1997, 50,
259.
(2) (a) Yoshida, T.; Koizumi, K.; Kawamura, Y.; Matsumoto, K.; Itazaki,
H. Japan Patent Kokai 5-310726, 1993. (b) Yoshida, T.; Koizumi, K.;
Kawamura, Y.; Matsumoto, K.; Itazaki, H. European Patent 560389 A1,
1993. (c) Yasui, K.; Tamura, Y.; Nakatani, T.; Kawada, K.; Ohtani, M. J.
Org. Chem. 1995, 60, 7567.
(5) For biosyntetic studies on pironetin, see: Kobayashi, S.; Tsuchiya,
K.; Nishide, M.; Nishikiori, T.; Nakagawa, T.; Shimada, N. J. Antibiot.
1995, 48, 893.
(6) Total synthesis of pironetin and analogues: (a) References 2c and 4.
(b) Gurjar, M. K.; Henri, J. T., Jr.; Bose, D. S.; Rama Rao, A. V.
Tetrahedron Lett. 1996, 37, 6615. (c) Gurjar, M. K.; Chakrabarti, A.; Rama
Rao, A. V. Heterocycles 1997, 45, 7. (d) Chida, N.; Yoshinaga, M.; Tobe,
T.; Ogawa, S. Chem. Commun. 1997, 1043. (e) Watanabe, H.; Watanabe,
H.; Kitahara, T. Tetrahedron Lett. 1998, 39, 8313. (f) Kitahara, T.;
Watanabe, H. J. Synth. Org. Chem., Jpn. 1998, 56, 884. (g) Watanabe, H.;
Watanabe, H.; Bando, M.; Kido, M.; Kitahara, T. Tetrahedron 1999, 55,
9755. (h) Watanabe, H.; Watanabe, H.; Usui, T.; Kondoh, M.; Osada, H.;
Kitahara, T. J. Antibiot. 2000, 53, 540. (i) Keck, G. E.; Knutson, C. E.;
Wiles, S. A. Org. Lett. 2001, 3, 707.
(3) Kondoh, M.; Usui, T.; Kobayashi, S.; Tsuchiya, K.; Nishikawa, K.;
Nishikiori, T.; Mayumi, T.; Osada, H. Cancer Lett. 1998, 126, 29.
(4) For a paper about chemical modifications of pironetin to reduce its
toxicity, see: Yasui, K.; Tamura, Y.; Nakatani, T.; Horibe, I.; Kawada, K.;
Koizumi, K.; Suzuki, R.; Ohtani, M. J. Antibiot. 1996, 49, 173.
(7) The numbering of 1 follows that suggested in ref 1b.
10.1021/ol027211o CCC: $25.00 © 2003 American Chemical Society
Published on Web 01/09/2003